Suppr超能文献

利用同位置扫描透射电子显微镜对商用Pt-Co/C燃料电池电催化剂在高温下进行纳米级降解研究。

Nanoscale Degradation Study of a Commercial Pt-Co/C Fuel-Cell Electrocatalyst at Elevated Temperature Utilizing Identical-Location Scanning Transmission Electron Microscopy.

作者信息

Matošin Ante, Bijelić Lazar, Kamšek Ana Rebeka, Dražić Goran, Gatalo Matija, Bele Marjan, Hodnik Nejc

机构信息

National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia.

Faculty of Chemistry and Chemical Technology, Večna pot 113, 1000 Ljubljana, Slovenia.

出版信息

J Phys Chem C Nanomater Interfaces. 2025 Aug 19;129(34):15419-15432. doi: 10.1021/acs.jpcc.5c03548. eCollection 2025 Aug 28.

Abstract

Understanding the degradation mechanisms of Pt-based alloy electrocatalysts under realistic operating conditions, such as elevated temperature, is essential for improving the durability of proton exchange membrane fuel cells (PEMFCs). This study investigates the degradation behavior of a commercial PEMFC Pt-Co/C electrocatalyst on the individual nanoparticle scale, employing identical location scanning transmission electron microscopy (IL-STEM), in combination with electrochemical methods. The catalyst was subjected to the modified US Department of Energy protocol at an elevated temperature (fast potential cycling between 0.6 and 0.95 V with a 3 s hold at each potential limit for 10,000 cycles in 0.1 M HClO at 60 °C) in order to partially simulate real-world operating conditions. To evaluate the specific role of temperature in the degradation process, additional experiments were carried out at room temperature. The primary aim was to elucidate temperature-dependent nanostructural changes and correlate them with electrochemical characterization. Results reveal distinct alterations in Pt-Co alloy nanoparticles' morphology, such as necking and increased circularity. These are driven by surface energy minimization via coalescence, dissolution, and redeposition mechanisms. By correlating nanoscale observations with changes in the intrinsic electrochemical properties, our study provides crucial insights into the degradation pathways at elevated temperatures, informing the design of more durable catalyst formulations for future fuel cell devices.

摘要

了解铂基合金电催化剂在实际运行条件下(如高温)的降解机制,对于提高质子交换膜燃料电池(PEMFC)的耐久性至关重要。本研究采用相同位置扫描透射电子显微镜(IL-STEM)并结合电化学方法,在单个纳米颗粒尺度上研究了商用PEMFC Pt-Co/C电催化剂的降解行为。该催化剂在高温下按照美国能源部修改后的协议进行处理(在60°C的0.1 M HClO中,在0.6至0.95 V之间快速电位循环,在每个电位极限保持3 s,进行10000次循环),以部分模拟实际运行条件。为了评估温度在降解过程中的具体作用,在室温下进行了额外的实验。主要目的是阐明与温度相关的纳米结构变化,并将其与电化学表征相关联。结果揭示了Pt-Co合金纳米颗粒形态的明显变化,如颈缩和圆形度增加。这些变化是由通过聚结、溶解和再沉积机制使表面能量最小化驱动的。通过将纳米尺度的观察结果与本征电化学性质的变化相关联,我们的研究为高温下的降解途径提供了关键见解,为未来燃料电池装置设计更耐用的催化剂配方提供了依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0420/12400420/cd226af3cefa/jp5c03548_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验