IEEE Trans Biomed Eng. 2020 Jan;67(1):277-290. doi: 10.1109/TBME.2019.2912466. Epub 2019 Apr 22.
To provide an overview of control strategies in commercial and research microprocessor-controlled prosthetic knees (MPKs).
Five commercially available MPKs described in patents, and five research MPKs reported in scientific literature were compared. Their working principles, intent recognition, and walking controller were analyzed. Speed and slope adaptability of the walking controller was considered as well.
Whereas commercial MPKs are mostly passive, i.e., do not inject energy in the system, and employ heuristic rule-based intent classifiers, research MPKs are all powered and often utilize machine learning algorithms for intention detection. Both commercial and research MPKs rely on finite state machine impedance controllers for walking. Yet while commercial MPKs require a prosthetist to adjust impedance settings, scientific research is focused on reducing the tunable parameter space and developing unified controllers, independent of subject anthropometrics, walking speed, and ground slope.
The main challenges in the field of powered, active MPKs (A-MPKs) to boost commercial viability are first to demonstrate the benefit of A-MPKs compared to passive MPKs or mechanical non-microprocessor knees using biomechanical, performance-based and patient-reported metrics. Second, to evaluate control strategies and intent recognition in an uncontrolled environment, preferably outside the laboratory setting. And third, even though research MPKs favor sophisticated algorithms, to maintain the possibility of practical and comprehensible tuning of control parameters, considering optimal control cannot be known a priori.
This review identifies main challenges in the development of A-MPKs, which have thus far hindered their broad availability on the market.
概述商业和研究用微处理器控制假肢膝关节(MPK)的控制策略。
对专利中描述的 5 种市售 MPK 和科学文献中报道的 5 种研究用 MPK 进行比较。分析其工作原理、意图识别和行走控制器。还考虑了行走控制器的速度和坡度适应性。
商业 MPK 大多为被动式,即不向系统注入能量,采用基于启发式规则的意图分类器,而研究用 MPK 均为动力式,常采用机器学习算法进行意图检测。商业和研究用 MPK 都依赖于有限状态机阻抗控制器进行行走。虽然商业 MPK 需要假肢矫形师调整阻抗设置,但科学研究的重点是减少可调参数空间并开发独立于受试者人体测量学、行走速度和地面坡度的统一控制器。
在提高商业可行性的动力主动 MPK(A-MPK)领域,主要挑战首先是使用生物力学、基于性能和患者报告的指标,证明 A-MPK 相对于被动 MPK 或机械非微处理器膝关节的优势。其次,要在不受控制的环境中评估控制策略和意图识别,最好是在实验室环境之外。第三,尽管研究用 MPK 青睐复杂的算法,但为了保持控制参数实际和易于理解的调整可能性,考虑到最优控制事先是未知的。
本综述确定了 A-MPK 发展中的主要挑战,这些挑战迄今为止阻碍了它们在市场上的广泛应用。