Suppr超能文献

RecSys-DAN:用于跨域推荐系统的判别对抗网络。

RecSys-DAN: Discriminative Adversarial Networks for Cross-Domain Recommender Systems.

作者信息

Wang Cheng, Niepert Mathias, Li Hui

出版信息

IEEE Trans Neural Netw Learn Syst. 2020 Aug;31(8):2731-2740. doi: 10.1109/TNNLS.2019.2907430. Epub 2019 Apr 24.

Abstract

Data sparsity and data imbalance are practical and challenging issues in cross-domain recommender systems (RSs). This paper addresses those problems by leveraging the concepts which derive from representation learning, adversarial learning, and transfer learning (particularly, domain adaptation). Although various transfer learning methods have shown promising performance in this context, our proposed novel method RecSys-DAN focuses on alleviating the cross-domain and within-domain data sparsity and data imbalance and learns transferable latent representations for users, items, and their interactions. Different from the existing approaches, the proposed method transfers the latent representations from a source domain to a target domain in an adversarial way. The mapping functions in the target domain are learned by playing a min-max game with an adversarial loss, aiming to generate domain indistinguishable representations for a discriminator. Four neural architectural instances of ResSys-DAN are proposed and explored. Empirical results on real-world Amazon data show that, even without using labeled data (i.e., ratings) in the target domain, RecSys-DAN achieves competitive performance as compared to the state-of-the-art supervised methods. More importantly, RecSys-DAN is highly flexible to both unimodal and multimodal scenarios, and thus it is more robust to the cold-start recommendation which is difficult for the previous methods.

摘要

数据稀疏性和数据不平衡是跨域推荐系统(RSs)中实际存在且具有挑战性的问题。本文通过利用源自表示学习、对抗学习和迁移学习(特别是域适应)的概念来解决这些问题。尽管各种迁移学习方法在这种情况下已显示出有前景的性能,但我们提出的新颖方法RecSys-DAN专注于减轻跨域和域内的数据稀疏性和数据不平衡,并为用户、物品及其交互学习可迁移的潜在表示。与现有方法不同,该方法以对抗的方式将潜在表示从源域转移到目标域。目标域中的映射函数通过与对抗损失进行极小极大博弈来学习,旨在为判别器生成域不可区分的表示。提出并探索了RecSys-DAN的四种神经架构实例。在真实世界的亚马逊数据上的实证结果表明,即使在目标域中不使用标记数据(即评分),RecSys-DAN与最先进的监督方法相比仍能实现有竞争力的性能。更重要的是,RecSys-DAN对单峰和多峰场景都具有高度灵活性,因此对于先前方法难以处理的冷启动推荐更具鲁棒性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验