Dept. Computer Science, and Interdisciplinary Center for Bioinformatics, Univ. Leipzig, Härtelstr. 16-18, Leipzig, D-04107, Germany.
Dept. Theoretical Chemistry, Univ. Vienna, Währingerstr. 17, Wien, A-1090, Austria.
BMC Bioinformatics. 2019 Apr 25;20(1):209. doi: 10.1186/s12859-019-2784-7.
The design of multi-stable RNA molecules has important applications in biology, medicine, and biotechnology. Synthetic design approaches profit strongly from effective in-silico methods, which substantially reduce the need for costly wet-lab experiments.
We devise a novel approach to a central ingredient of most in-silico design methods: the generation of sequences that fold well into multiple target structures. Based on constraint networks, our approach supports generic Boltzmann-weighted sampling, which enables the positive design of RNA sequences with specific free energies (for each of multiple, possibly pseudoknotted, target structures) and GC-content. Moreover, we study general properties of our approach empirically and generate biologically relevant multi-target Boltzmann-weighted designs for an established design benchmark. Our results demonstrate the efficacy and feasibility of the method in practice as well as the benefits of Boltzmann sampling over the previously best multi-target sampling strategy-even for the case of negative design of multi-stable RNAs. Besides empirically studies, we finally justify the algorithmic details due to a fundamental theoretic result about multi-stable RNA design, namely the #P-hardness of the counting of designs.
introduces a novel, flexible, and effective approach to multi-target RNA design, which promises broad applicability and extensibility. Our free software is available at: https://github.com/yannponty/RNARedPrint Supplementary data are available online.
多稳定 RNA 分子的设计在生物学、医学和生物技术中有重要的应用。合成设计方法得益于有效的计算机方法,这大大减少了对昂贵的湿实验室实验的需求。
我们设计了一种新的方法来解决大多数计算机设计方法的核心成分:生成能够折叠成多个目标结构的序列。基于约束网络,我们的方法支持通用的玻尔兹曼加权采样,这使得能够对具有特定自由能(对于多个可能的假结目标结构中的每一个)和 GC 含量的 RNA 序列进行正向设计。此外,我们从经验上研究了我们方法的一般性质,并为一个已建立的设计基准生成了具有生物学相关性的多目标玻尔兹曼加权设计。我们的结果证明了该方法在实践中的有效性和可行性,以及玻尔兹曼采样相对于以前最好的多目标采样策略的优势——即使是在多稳定 RNA 负向设计的情况下也是如此。除了实证研究外,我们最终还根据多稳定 RNA 设计的一个基本理论结果(即设计计数的 #P 困难性)证明了算法细节的合理性。
引入了一种新的、灵活的、有效的多目标 RNA 设计方法,具有广泛的适用性和可扩展性。我们的免费软件可在:https://github.com/yannponty/RNARedPrint 在线提供补充数据。