Suppr超能文献

S1利用单细胞的特征依赖性差异选择性和群体的分布式模式来编码机械感觉。

S1 Employs Feature-Dependent Differential Selectivity of Single Cells and Distributed Patterns of Populations to Encode Mechanosensations.

作者信息

Kim Yoo Rim, Kim Chang-Eop, Yoon Heera, Kim Sun Kwang, Kim Sang Jeong

机构信息

Department of Physiology, Seoul National University College of Medicine, Seoul, South Korea.

Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea.

出版信息

Front Cell Neurosci. 2019 Apr 5;13:132. doi: 10.3389/fncel.2019.00132. eCollection 2019.

Abstract

The primary somatosensory (S1) cortex plays an important role in the perception and discrimination of touch and pain mechanosensations. Conventionally, neurons in the somatosensory system including S1 cortex have been classified into low/high threshold (HT; non-nociceptive/nociceptive) or wide dynamic range (WDR; convergent) neurons by their electrophysiological responses to innocuous brush-stroke and noxious forceps-pinch stimuli. Besides this "noxiousness" (innocuous/noxious) feature, each stimulus also includes other stimulus features: "texture" (brush hairs/forceps-steel arm), "dynamics" (dynamic stroke/static press) and "intensity" (weak/strong). However, it remains unknown how S1 neurons inclusively process such diverse features of brushing and pinch at the single-cell and population levels. Using two-photon Ca imaging in the layer 2/3 neurons of the mouse S1 cortex, we identified clearly separated response patterns of the S1 neural population with distinct tuning properties of individual cells to texture, dynamics and noxiousness features of cutaneous mechanical stimuli. Among cells other than broadly tuned neurons, the majority of the cells showed a highly selective response to the difference in texture, but low selectivity to the difference in dynamics or noxiousness. Between the two low selectivity features, the difference in dynamics was slightly more specific, yet both could be decoded using the response patterns of neural populations. In addition, more neurons are recruited and stronger Ca responses are evoked as the intensity of forceps-pinch is gradually increased. Our results suggest that S1 neurons encode various features of mechanosensations with feature-dependent differential selectivity of single cells and distributed response patterns of populations. Moreover, we raise a caution about describing neurons by a single stimulus feature ignoring other aspects of the sensory stimuli.

摘要

主要躯体感觉(S1)皮层在触觉和痛觉机械感觉的感知与辨别中发挥着重要作用。传统上,包括S1皮层在内的躯体感觉系统中的神经元,已根据其对无害的刷擦和有害的镊子夹捏刺激的电生理反应,被分类为低/高阈值(HT;非伤害性/伤害性)或广动力范围(WDR;汇聚型)神经元。除了这种“有害性”(无害/有害)特征外,每种刺激还包括其他刺激特征:“质地”(刷毛/镊子钢臂)、“动力学”(动态刷擦/静态按压)和“强度”(弱/强)。然而,S1神经元如何在单细胞和群体水平上综合处理刷擦和夹捏的这些多样特征,仍然未知。通过对小鼠S1皮层第2/3层神经元进行双光子钙成像,我们明确识别出S1神经群体的明显分离的反应模式,单个细胞对皮肤机械刺激的质地、动力学和有害性特征具有不同的调谐特性。在除了宽泛调谐神经元之外的细胞中,大多数细胞对质地差异表现出高度选择性反应,但对动力学差异或有害性差异的选择性较低。在这两个低选择性特征之间,动力学差异略为更具特异性,但两者都可以使用神经群体的反应模式进行解码。此外,随着镊子夹捏强度逐渐增加,会招募更多神经元并诱发更强的钙反应。我们的结果表明,S1神经元通过单细胞的特征依赖性差异选择性和群体的分布式反应模式来编码机械感觉的各种特征。此外,我们提醒注意,不要仅通过单一刺激特征来描述神经元而忽略感觉刺激的其他方面。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ccb4/6460949/56233266735e/fncel-13-00132-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验