Suppr超能文献

具有从头推导参数的双孔生理药代动力学模型,用于预测不同大小蛋白治疗药物的血浆药代动力学。

Two-pore physiologically based pharmacokinetic model with de novo derived parameters for predicting plasma PK of different size protein therapeutics.

机构信息

Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, 455 Kapoor Hall, Buffalo, NY, 14214-8033, USA.

出版信息

J Pharmacokinet Pharmacodyn. 2019 Jun;46(3):305-318. doi: 10.1007/s10928-019-09639-2. Epub 2019 Apr 26.

Abstract

Two-pore PBPK models have been used for characterizing the PK of protein therapeutics since 1990s. However, widespread utilization of these models is hampered by the lack of a priori parameter values, which are typically estimated using the observed data. To overcome this hurdle, here we have presented the development of a two-pore PBPK model using de novo derived parameters. The PBPK model was validated using plasma PK data for different size proteins in mice. Using the "two pore theory" we were able to establish the relationship between protein size and key model parameters, such as: permeability-surface area product (PS), vascular reflection coefficient (σ), peclet number (Pe), and glomerular sieving coefficient (θ). The model accounted for size dependent changes in tissue extravasation and glomerular filtration. The model was able to a priori predict the PK of 8 different proteins: IgG (150 kDa), scFv-Fc (105 kDa), F(ab) (100 kDa, minibody (80 kDa), scFv (55 kDa), Fab (50 kDa), diabody (50 kDa), scFv (27 kDa), and nanobody (13 kDa). In addition, the model was able to provide unprecedented quantitative insight into the relative contribution of convective and diffusive pathway towards trans-capillary mass transportation of different size proteins. The two-pore PBPK model was also able to predict systemic clearance (CL) versus Molecular Weight relationship for different size proteins reasonably well. As such, the PBPK model proposed here represents a bottom-up systems PK model for protein therapeutics, which can serve as a generalized platform for the development of truly translational PBPK model for protein therapeutics.

摘要

自 20 世纪 90 年代以来,双孔 PBPK 模型已被用于描述蛋白类药物的 PK 特征。然而,这些模型的广泛应用受到缺乏先验参数值的阻碍,这些参数值通常是使用观察数据进行估计的。为了克服这一障碍,我们在这里提出了一种使用从头开始推导的参数来建立双孔 PBPK 模型的方法。该 PBPK 模型使用不同大小蛋白在小鼠中的血浆 PK 数据进行了验证。我们使用“双孔理论”建立了蛋白大小与关键模型参数(如渗透率表面积乘积 (PS)、血管反射系数 (σ)、 Peclet 数 (Pe) 和肾小球筛系数 (θ))之间的关系。该模型解释了组织外渗和肾小球滤过与蛋白大小相关的变化。该模型能够预先预测 8 种不同蛋白的 PK:IgG(150 kDa)、scFv-Fc(105 kDa)、F(ab)(100 kDa、minibody(80 kDa)、scFv(55 kDa)、Fab(50 kDa)、diabody(50 kDa)、scFv(27 kDa)和 nanobody(13 kDa)。此外,该模型还能够提供前所未有的定量见解,了解不同大小蛋白经毛细血管跨膜质量转运的对流和扩散途径的相对贡献。双孔 PBPK 模型还能够合理地预测不同大小蛋白的系统清除率 (CL) 与分子量之间的关系。因此,这里提出的 PBPK 模型代表了一种用于蛋白类药物的自下而上的系统 PK 模型,可作为开发蛋白类药物真正转化性 PBPK 模型的通用平台。

相似文献

6
A translational platform PBPK model for antibody disposition in the brain.一种用于抗体在脑内处置的转化平台PBPK模型。
J Pharmacokinet Pharmacodyn. 2019 Aug;46(4):319-338. doi: 10.1007/s10928-019-09641-8. Epub 2019 May 21.
8
Effect of Size on Solid Tumor Disposition of Protein Therapeutics.尺寸对蛋白质治疗药物在实体瘤中分布的影响。
Drug Metab Dispos. 2019 Oct;47(10):1136-1145. doi: 10.1124/dmd.119.087809. Epub 2019 Aug 6.

引用本文的文献

本文引用的文献

2
Influence of Molecular size on the clearance of antibody fragments.分子大小对抗体片段清除率的影响。
Pharm Res. 2017 Oct;34(10):2131-2141. doi: 10.1007/s11095-017-2219-y. Epub 2017 Jul 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验