Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, New York.
Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, New York
Drug Metab Dispos. 2019 Oct;47(10):1136-1145. doi: 10.1124/dmd.119.087809. Epub 2019 Aug 6.
In this study, we evaluated the effect of size on tumor disposition of protein therapeutics, including the plasma and tumor pharmacokinetics (PK) of trastuzumab (∼150 kDa), FcRn-nonbinding trastuzumab (∼150 kDa), F(ab) fragment of trastuzumab (∼100 kDa), Fab fragment of trastuzumab (∼50 kDa), and trastuzumab scFv (∼27 kDa) in both antigen (i.e., HER2)-overexpressing (N87) and antigen-nonexpressing (MDA-MB-468) tumor-bearing mice. The observed data were used to develop the maximum tumor uptake versus molecular weight and tumor-to-plasma area under the curve (AUC) ratio versus molecular weight relationships. Comparison of the PK of different sizes of FcRn nonbinding molecules in target-expressing tumor showed that ∼100 kDa is an optimal size to achieve maximum tumor uptake and ∼50 kDa is an optimal size to achieve maximum tumor-to-plasma exposure ratio of protein therapeutics. The PK data were also used to validate a systems PK model for tumor disposition of different-sized protein therapeutics. The PK model was able to predict the PK of all five molecules in both tumor types reasonably well (within 2- to 3-fold). In addition, the model captured the bell-shaped relationships observed between maximum tumor uptake and molecular weight and between tumor-to-plasma AUC ratio and molecular weight. Our results provide an unprecedented insight into the effect of size and target engagement on the tumor PK of protein therapeutics. Our results also provide further validation of the tumor disposition model, which can be used to support discovery, development, and preclinical-to-clinical translation of different sizes of protein therapeutics. SIGNIFICANCE STATEMENT: This article highlights the importance of molecular size and target engagement on the tumor disposition of protein therapeutics. Our results suggest that ∼100 kDa is an optimal size to achieve maximum tumor uptake and ∼50 kDa is an optimal size to achieve maximum tumor-to-plasma exposure ratio for non-FcRn-binding targeted protein therapeutics. We also demonstrate that a systems pharmacokinetics model developed to characterize tumor disposition of protein therapeutics can predict a priori the disposition of different-sized protein therapeutics in target-expressing and target-nonexpressing solid tumors.
在这项研究中,我们评估了大小对蛋白质治疗药物肿瘤分布的影响,包括曲妥珠单抗(约 150 kDa)、不与 FcRn 结合的曲妥珠单抗(约 150 kDa)、曲妥珠单抗 F(ab) 片段(约 100 kDa)、曲妥珠单抗 Fab 片段(约 50 kDa)和曲妥珠单抗 scFv(约 27 kDa)在抗原(即 HER2)过表达(N87)和抗原非表达(MDA-MB-468)荷瘤小鼠中的血浆和肿瘤药代动力学(PK)。观察到的数据用于建立最大肿瘤摄取与分子量以及肿瘤与血浆 AUC 比值与分子量的关系。比较靶向表达肿瘤中不同大小的 FcRn 非结合分子的 PK 表明,约 100 kDa 是实现最大肿瘤摄取的最佳大小,约 50 kDa 是实现蛋白质治疗药物最大肿瘤与血浆暴露比的最佳大小。PK 数据还用于验证不同大小蛋白质治疗药物肿瘤分布的系统 PK 模型。PK 模型能够合理地预测所有五种分子在两种肿瘤类型中的 PK(在 2 至 3 倍范围内)。此外,该模型还捕获了在最大肿瘤摄取与分子量之间以及肿瘤与血浆 AUC 比值与分子量之间观察到的钟形关系。我们的结果为大小和靶标结合对蛋白质治疗药物的肿瘤 PK 的影响提供了前所未有的见解。我们的结果还进一步验证了肿瘤处置模型,该模型可用于支持不同大小的蛋白质治疗药物的发现、开发以及临床前到临床的转化。意义:本文强调了分子大小和靶标结合对蛋白质治疗药物肿瘤分布的重要性。我们的结果表明,约 100 kDa 是实现最大肿瘤摄取的最佳大小,约 50 kDa 是实现非 FcRn 结合靶向蛋白质治疗药物最大肿瘤与血浆暴露比的最佳大小。我们还表明,开发用于表征蛋白质治疗药物肿瘤分布的系统药代动力学模型可以预测靶向表达和非靶向表达实体瘤中不同大小的蛋白质治疗药物的处置。