Williamson Benjamin A D, Buckeridge John, Chadwick Nicholas P, Sathasivam Sanjayan, Carmalt Claire J, Parkin Ivan P, Scanlon David O
Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
Thomas Young Centre, University College London, Gower Street, London WC1E 6BT, U.K.
Chem Mater. 2019 Apr 9;31(7):2577-2589. doi: 10.1021/acs.chemmater.9b00257. Epub 2019 Mar 17.
Modification of TiO to increase its visible light activity and promote higher performance photocatalytic ability has become a key research goal for materials scientists in the past 2 decades. One of the most popular approaches proposed this as "passivated codoping", whereby an equal number of donor and acceptor dopants are introduced into the lattice, producing a charge neutral system with a reduced band gap. Using the archetypal codoping pairs of [Nb + N]- and [Ta + N]-doped anatase, we demonstrate using hybrid density functional theory that passivated codoping is not achievable in TiO. Our results indicate that the natural defect chemistry of the host system (in this case n-type anatase TiO) is dominant, and so concentration parity of dopant types is not achievable under any thermodynamic growth conditions. The implications of passivated codoping for band gap manipulation in general are discussed.
在过去20年里,对二氧化钛(TiO)进行改性以提高其可见光活性并促进更高性能的光催化能力已成为材料科学家的关键研究目标。最流行的方法之一是“钝化共掺杂”,即将等量的施主和受主掺杂剂引入晶格,形成带隙减小的电荷中性体系。使用典型的[Nb + N] - 和[Ta + N] - 掺杂锐钛矿共掺杂对,我们利用杂化密度泛函理论证明在TiO中无法实现钝化共掺杂。我们的结果表明主体体系(在这种情况下为n型锐钛矿TiO)的自然缺陷化学起主导作用,因此在任何热力学生长条件下都无法实现掺杂剂类型的浓度均等。文中讨论了钝化共掺杂对一般带隙调控的影响。