Suppr超能文献

子宫内膜癌术前风险分层的新方法:免疫组织化学标志物的附加价值。

A Novel Approach to Preoperative Risk Stratification in Endometrial Cancer: The Added Value of Immunohistochemical Markers.

作者信息

Weinberger Vit, Bednarikova Marketa, Hausnerova Jitka, Ovesna Petra, Vinklerova Petra, Minar Lubos, Felsinger Michal, Jandakova Eva, Cihalova Marta, Zikan Michal

机构信息

Department of Gynecology and Obstetrics, University Hospital in Brno and Masaryk University, Brno, Czechia.

Department of Internal Medicine - Hematology and Oncology, University Hospital in Brno and Masaryk University, Brno, Czechia.

出版信息

Front Oncol. 2019 Apr 12;9:265. doi: 10.3389/fonc.2019.00265. eCollection 2019.

Abstract

The current model used to preoperatively stratify endometrial cancer (EC) patients into low- and high-risk groups is based on histotype, grade, and imaging method and is not optimal. Our study aims to prove whether a new model incorporating immunohistochemical markers, L1CAM, ER, PR, p53, obtained from preoperative biopsy could help refine stratification and thus the choice of adequate surgical extent and appropriate adjuvant treatment. The following data were prospectively collected from patients operated for EC from January 2016 through August 2018: age, pre- and post-operative histology, grade, lymphovascular space invasion, L1CAM, ER, PR, p53, imaging parameters obtained from ultrasound, CT chest/abdomen, final FIGO stage, and current decision model (based on histology, grade, imaging method). In total, 132 patients were enrolled. The current model revealed 48% sensitivity and 89% specificity for high-risk group determination. In myometrial invasion >50%, lower levels of ER ( = 0.024), PR (0.048), and higher levels of L1CAM ( = 0.001) were observed; in cervical involvement a higher expression of L1CAM ( = 0.001), lower PR ( = 0.014); in tumors with positive LVSI, higher L1CAM ( = 0.014); in cases with positive LN, lower expression of ER/PR ( < 0.001), higher L1CAM ( = 0.002) and frequent mutation of p53 ( = 0.008). Cut-offs for determination of high-risk tumors were established: ER <78% ( = 0.001), PR <88% ( = 0.008), and L1CAM ≥4% ( < 0.001). The positive predictive values (PPV) for ER, PR, and L1CAM were 87% (60.8-96.5%), 63% (52.1-72.8%), 83% (70.5-90.8%); the negative predictive values (NPV) for each marker were as follows: 59% (54.5-63.4%), 65% (55.6-74.0%), and 77% (67.3-84.2%). Mutation of p53 revealed PPV 94% (67.4-99.1%) and NPV 61% (56.1-66.3%). When immunohistochemical markers were included into the current diagnostic model, sensitivity improved (48.4 vs. 75.8%, < 0.001). PPV was similar for both methods, while NPV (i.e., the probability of extremely low risk in negative test cases) was improved (66 vs. 78.9%, < 0.001). We proved superiority of new proposed model using immunohistochemical markers over standard clinical practice and that new proposed model increases accuracy of prognosis prediction. We propose wider implementation and validation of the proposed model.

摘要

目前用于术前将子宫内膜癌(EC)患者分为低风险和高风险组的模型是基于组织类型、分级和成像方法,并非最优。我们的研究旨在证明,一种纳入从术前活检获得的免疫组化标志物L1CAM、ER、PR、p53的新模型是否有助于优化分层,从而有助于选择合适的手术范围和恰当的辅助治疗。从2016年1月至2018年8月接受EC手术的患者中前瞻性收集了以下数据:年龄、术前和术后组织学、分级、淋巴血管间隙浸润、L1CAM、ER、PR、p53、超声、胸部/腹部CT获得的成像参数、最终国际妇产科联盟(FIGO)分期以及当前的决策模型(基于组织学、分级、成像方法)。总共纳入了132例患者。当前模型对高风险组判定的敏感性为48%,特异性为89%。在肌层浸润>50%的患者中,观察到ER水平较低(P = 0.024)、PR水平较低(0.048)以及L1CAM水平较高(P = 0.001);在宫颈受累的患者中,L1CAM表达较高(P = 0.001)、PR较低(P = 0.014);在伴有LVSI阳性的肿瘤中,L1CAM较高(P = 0.014);在伴有淋巴结阳性的病例中,ER/PR表达较低(P < 0.001)、L1CAM较高(P = 0.002)且p53频繁突变(P = 0.008)。确定了高风险肿瘤的截断值:ER <78%(P = 0.001)、PR <88%(P = 0.008)以及L1CAM≥4%(P < 0.001)。ER、PR和L1CAM的阳性预测值(PPV)分别为87%(60.8 - 96.5%)、63%(52.1 - 72.8%)、83%(70.5 - 90.8%);每个标志物的阴性预测值(NPV)如下:59%(54.5 - 63.4%)、65%(55.6 - 74.0%)以及77%(67.3 - 84.2%)。p53突变的PPV为94%(67.4 - 99.1%),NPV为61%(56.1 - 66.3%)。当将免疫组化标志物纳入当前诊断模型时,敏感性有所提高(48.4%对75.8%,P < 0.001)。两种方法的PPV相似,而NPV(即阴性检测病例中极低风险的概率)有所提高(66%对78.9%,P < 0.001)。我们证明了使用免疫组化标志物的新提议模型优于标准临床实践,且新提议模型提高了预后预测的准确性。我们提议更广泛地实施和验证所提议的模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca38/6473394/7815ea9b986d/fonc-09-00265-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验