ARC Centre of Excellence for Nanoscale BioPhotonics, School of Science, RMIT University, Melbourne, VIC 3000, Australia.
ARC Centre of Excellence for Nanoscale BioPhotonics, Department of Physics and Astronomy, Macquarie University, Sydney, NSW 2109, Australia.
Sci Adv. 2019 Apr 26;5(4):eaav1555. doi: 10.1126/sciadv.aav1555. eCollection 2019 Apr.
Optical fiber bundle microendoscopes are widely used for visualizing hard-to-reach areas of the human body. These ultrathin devices often forgo tunable focusing optics because of size constraints and are therefore limited to two-dimensional (2D) imaging modalities. Ideally, microendoscopes would record 3D information for accurate clinical and biological interpretation, without bulky optomechanical parts. Here, we demonstrate that the optical fiber bundles commonly used in microendoscopy are inherently sensitive to depth information. We use the mode structure within fiber bundle cores to extract the spatio-angular description of captured light rays-the light field-enabling digital refocusing, stereo visualization, and surface and depth mapping of microscopic scenes at the distal fiber tip. Our work opens a route for minimally invasive clinical microendoscopy using standard bare fiber bundle probes. Unlike coherent 3D multimode fiber imaging techniques, our incoherent approach is single shot and resilient to fiber bending, making it attractive for clinical adoption.
光纤束微内窥镜被广泛用于可视化人体难以到达的区域。由于尺寸限制,这些超精细的设备通常不采用可调焦光学器件,因此只能局限于二维(2D)成像模式。理想情况下,微内窥镜将记录 3D 信息,以进行准确的临床和生物学解释,而无需笨重的光机部件。在这里,我们证明了微内窥镜中常用的光纤束固有地对深度信息敏感。我们使用光纤束芯部中的模式结构来提取捕获光线的空间-角度描述-光场,从而实现数字重聚焦、立体可视化以及在远端光纤尖端对微观场景的表面和深度映射。我们的工作为使用标准裸光纤束探头进行微创临床微内窥镜检查开辟了一条道路。与相干 3D 多模光纤成像技术不同,我们的非相干方法是单次拍摄的,并且对光纤弯曲具有弹性,因此非常适合临床应用。