Suppr超能文献

使用预训练语言模型从临床叙述中提取用药变化。

Extracting medication changes in clinical narratives using pre-trained language models.

机构信息

Department of Information Sciences & Technology, George Mason University, Fairfax, VA, United States of America.

Department of Information Sciences & Technology, George Mason University, Fairfax, VA, United States of America.

出版信息

J Biomed Inform. 2023 Mar;139:104302. doi: 10.1016/j.jbi.2023.104302. Epub 2023 Feb 6.

Abstract

An accurate and detailed account of patient medications, including medication changes within the patient timeline, is essential for healthcare providers to provide appropriate patient care. Healthcare providers or the patients themselves may initiate changes to patient medication. Medication changes take many forms, including prescribed medication and associated dosage modification. These changes provide information about the overall health of the patient and the rationale that led to the current care. Future care can then build on the resulting state of the patient. This work explores the automatic extraction of medication change information from free-text clinical notes. The Contextual Medication Event Dataset (CMED) is a corpus of clinical notes with annotations that characterize medication changes through multiple change-related attributes, including the type of change (start, stop, increase, etc.), initiator of the change, temporality, change likelihood, and negation. Using CMED, we identify medication mentions in clinical text and propose three novel high-performing BERT-based systems that resolve the annotated medication change characteristics. We demonstrate that our proposed systems improve medication change classification performance over the initial work exploring CMED.

摘要

准确详细地记录患者的用药情况,包括患者时间线上的用药变化,对于医疗保健提供者为患者提供适当的护理至关重要。医疗保健提供者或患者本人可能会发起对患者用药的更改。用药变化有多种形式,包括处方药物和相关剂量调整。这些变化提供了有关患者整体健康状况以及导致当前护理的基本原理的信息。随后的护理可以在此基础上进一步了解患者的情况。这项工作探讨了从自由文本临床记录中自动提取用药变化信息。语境用药事件数据集(CMED)是一个临床记录语料库,其中包含通过多个与变化相关的属性来描述用药变化的注释,包括变化类型(开始、停止、增加等)、变化的发起者、时间性、变化可能性和否定。使用 CMED,我们在临床文本中识别药物提及,并提出了三个新颖的基于 BERT 的高性能系统,以解决注释的药物变化特征。我们证明,我们提出的系统提高了药物变化分类性能,超过了最初探索 CMED 的工作。

相似文献

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验