IEEE Trans Neural Syst Rehabil Eng. 2019 Jun;27(6):1149-1159. doi: 10.1109/TNSRE.2019.2913400. Epub 2019 Apr 26.
People's mental workload profoundly affects their work efficiency and health. Mental workload assessment can be used to effectively avoid serious accidents caused by excessive mental workload. Both electroencephalogram (EEG) spectral features and its temporal features have proven to be useful in addressing this problem. The fusion of the two types of features can provide rich distinguishing information for improving mental workload assessment. Benefiting from the progress of deep learning, this study proposes the two-stream neural networks (TSNN) for fusing the two types of EEG features. Compared with hand-crafted features, the TSNN can learn and fuse EEG features from the spectral and temporal dimensions automatically without prior knowledge. The TSNN includes a spectral stream and a temporal stream. Each stream consists of a convolutional neural network (CNN) and a temporal convolutional network (TCN) to learn spectral or temporal features from EEG topographic maps. To fuse the learned spectral and temporal information, we concatenate the output of the two streams prior to the fully connected layer. EEG data were collected from 17 subjects who performed n-back tasks with easy, medium, and hard difficulty levels, leading to a three-class mental workload classification. The results show that the TSNN achieves an average accuracy of 91.9%, which is a significant improvement over baseline classifiers based on hand-crafted features. The TSNN also outperforms state-of-the-art deep learning methods developed for EEG classification. The results indicate that the proposed structure is promising for fusing spectral and temporal features for mental workload assessment. In addition, it provides a high-precision approach for potential applications during cognitive activities.
人们的精神工作负荷会深刻影响他们的工作效率和健康。精神工作负荷评估可用于有效避免因精神工作负荷过大而导致的严重事故。脑电图(EEG)的频谱特征及其时间特征都已被证明在解决这个问题上是有用的。这两种类型的特征的融合可以为提高精神工作负荷评估提供丰富的鉴别信息。得益于深度学习的进步,本研究提出了双流神经网络(TSNN)来融合这两种类型的 EEG 特征。与手工制作的特征相比,TSNN 可以自动从频谱和时间维度学习和融合 EEG 特征,而无需先验知识。TSNN 包括一个频谱流和一个时间流。每个流都由卷积神经网络(CNN)和时间卷积网络(TCN)组成,用于从 EEG 地形图中学习频谱或时间特征。为了融合学习到的频谱和时间信息,我们在全连接层之前将两个流的输出连接起来。EEG 数据是从 17 名被试在执行简单、中等和困难难度水平 n-back 任务时收集的,这导致了三类精神工作负荷分类。结果表明,TSNN 的平均准确率为 91.9%,比基于手工制作特征的基线分类器有显著提高。TSNN 也优于为 EEG 分类开发的最新深度学习方法。结果表明,所提出的结构很有希望用于融合精神工作负荷评估的频谱和时间特征。此外,它为认知活动中的潜在应用提供了一种高精度的方法。