Suppr超能文献

基于时空联合维度的卷积神经网络在脑机接口系统中对脑电信号进行分类

EEG Signal Classification Using Convolutional Neural Networks on Combined Spatial and Temporal Dimensions for BCI Systems.

作者信息

Anwar Ayman M, Eldeib Ayman M

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:434-437. doi: 10.1109/EMBC44109.2020.9175894.

Abstract

EEG signal classification is an important task to build an accurate Brain Computer Interface (BCI) system. Many machine learning and deep learning approaches have been used to classify EEG signals. Besides, many studies have involved the time and frequency domain features to classify EEG signals. On the other hand, a very limited number of studies combine the spatial and temporal dimensions of the EEG signal. Brain dynamics are very complex across different mental tasks, thus it is difficult to design efficient algorithms with features based on prior knowledge. Therefore, in this study, we utilized the 2D AlexNet Convolutional Neural Network (CNN) to learn EEG features across different mental tasks without prior knowledge. First, this study adds spatial and temporal dimensions of EEG signals to a 2D EEG topographic map. Second, topographic maps at different time indices were cascaded to populate a 2D image for a given time window. Finally, the topographic maps enabled the AlexNet to learn features from the spatial and temporal dimensions of the brain signals. The classification performance was obtained by the proposed method on a multiclass dataset from BCI Competition IV dataset 2a. The proposed system obtained an average classification accuracy of 81.09%, outperforming the previous state-of-the-art methods by a margin of 4% for the same dataset. The results showed that converting the EEG classification problem from a (1D) time series to a (2D) image classification problem improves the classification accuracy for BCI systems. Also, our EEG topographic maps enabled CNN to learn subtle features from spatial and temporal dimensions, which better represent mental tasks than individual time or frequency domain features.

摘要

脑电图(EEG)信号分类是构建准确的脑机接口(BCI)系统的一项重要任务。许多机器学习和深度学习方法已被用于对EEG信号进行分类。此外,许多研究涉及到时间和频域特征来对EEG信号进行分类。另一方面,将EEG信号的空间和时间维度相结合的研究数量非常有限。不同心理任务下的脑动力学非常复杂,因此很难基于先验知识设计出具有有效特征的算法。因此,在本研究中,我们利用二维AlexNet卷积神经网络(CNN)在无需先验知识的情况下学习不同心理任务下的EEG特征。首先,本研究将EEG信号的空间和时间维度添加到二维EEG地形图中。其次,将不同时间索引处的地形图级联起来,以填充给定时间窗口的二维图像。最后,这些地形图使AlexNet能够从脑信号的空间和时间维度学习特征。通过所提出的方法在BCI竞赛IV数据集2a的多类数据集上获得了分类性能。所提出的系统获得了81.09%的平均分类准确率,在同一数据集上比先前的最先进方法高出4%。结果表明,将EEG分类问题从一维时间序列转换为二维图像分类问题提高了BCI系统的分类准确率。此外,我们的EEG地形图使CNN能够从空间和时间维度学习细微特征,这些特征比单个时间或频域特征能更好地表示心理任务。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验