Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany.
Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany;
Proc Natl Acad Sci U S A. 2019 May 14;116(20):9843-9852. doi: 10.1073/pnas.1817564116. Epub 2019 Apr 29.
We develop a detailed description of protein translational and rotational diffusion in concentrated solution on the basis of all-atom molecular dynamics simulations in explicit solvent. Our systems contain up to 540 fully flexible proteins with 3.6 million atoms. In concentrated protein solutions (100 mg/mL and higher), the proteins ubiquitin and lysozyme, as well as the protein domains third IgG-binding domain of protein G and villin headpiece, diffuse not as isolated particles, but as members of transient clusters between which they constantly exchange. A dynamic cluster model nearly quantitatively explains the increase in viscosity and the decrease in protein diffusivity with protein volume fraction, which both exceed the predictions from widely used colloid models. The Stokes-Einstein relations for translational and rotational diffusion remain valid, but the effective hydrodynamic radius grows linearly with protein volume fraction. This increase follows the observed increase in cluster size and explains the more dramatic slowdown of protein rotation compared with translation. Baxter's sticky-sphere model of colloidal suspensions captures the concentration dependence of cluster size, viscosity, and rotational and translational diffusion. The consistency between simulations and experiments for a diverse set of soluble globular proteins indicates that the cluster model applies broadly to concentrated protein solutions, with equilibrium dissociation constants for nonspecific protein-protein binding in the K ≈ 10-mM regime.
我们基于明溶剂全原子分子动力学模拟,对浓缩溶液中蛋白质的翻译和旋转扩散进行了详细描述。我们的系统包含多达 540 个完全灵活的蛋白质,共 360 万个原子。在高浓度的蛋白质溶液(100mg/ml 及以上)中,蛋白质泛素和溶菌酶以及蛋白质 G 的第三个 IgG 结合域和绒毛蛋白头部片段等蛋白质不是作为孤立的粒子扩散,而是作为它们之间不断交换的瞬态簇的成员扩散。动态簇模型几乎定量地解释了粘度的增加和蛋白质扩散率随蛋白质体积分数的降低,这两者都超过了广泛使用的胶体模型的预测。翻译和旋转扩散的斯多克斯-爱因斯坦关系仍然有效,但有效流体力学半径随蛋白质体积分数线性增长。这种增加与观察到的簇大小的增加一致,并解释了与翻译相比,蛋白质旋转的减速更为明显。胶体悬浮液中 Baxter 的粘性球模型捕捉到了簇大小、粘度以及旋转和翻译扩散的浓度依赖性。对于一组不同的可溶性球状蛋白质的模拟和实验之间的一致性表明,该簇模型广泛适用于高浓度蛋白质溶液,非特异性蛋白质-蛋白质结合的平衡离解常数在 K ≈ 10-mM 范围内。