Department of Otolaryngology , University of California, San Francisco , San Francisco , California 94158 , United States.
Department of Pharmaceutical Chemistry , University of California, San Francisco , San Francisco , California 94158 , United States.
Nano Lett. 2019 Jun 12;19(6):3761-3769. doi: 10.1021/acs.nanolett.9b00891. Epub 2019 May 3.
Multifunctional magnetic nanoparticles have shown great promise as next-generation imaging and perturbation probes for deciphering molecular and cellular processes. As a consequence of multicomponent integration into a single nanosystem, pre-existing nanoprobes are typically large and show limited access to biological targets present in a crowded microenvironment. Here, we apply organic-phase surface PEGylation, click chemistry, and charge-based valency discrimination principles to develop compact, modular, and monovalent magnetofluorescent nanoparticles (MFNs). We show that MFNs exhibit highly efficient labeling to target receptors present in cells with a dense and thick glycocalyx layer. We use these MFNs to interrogate the E-cadherin-mediated adherens junction formation and F-actin polymerization in a three-dimensional space, demonstrating the utility as modular and versatile mechanogenetic probes in the most demanding single-cell perturbation applications.
多功能磁性纳米粒子作为下一代成像和扰动探针,在破译分子和细胞过程方面显示出巨大的潜力。由于多种成分集成到单个纳米系统中,现有的纳米探针通常较大,并且对存在于拥挤微环境中的生物靶标有限制性的进入。在这里,我们应用有机相表面聚乙二醇化、点击化学和基于电荷的价态区分原理,开发了紧凑、模块化和单价的磁荧光纳米粒子(MFNs)。我们表明,MFNs 能够高效标记细胞中存在的具有密集厚糖萼层的靶受体。我们使用这些 MFNs 在三维空间中研究 E-钙粘蛋白介导的黏着连接形成和 F-肌动蛋白聚合,证明了它们作为模块化和多功能机械遗传探针在最具挑战性的单细胞扰动应用中的实用性。