School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD Research Center for Functional Biomaterials Engineering and Technology, Sun Yat-sen University, Guangzhou 510275, China.
Nanoscale. 2019 May 16;11(19):9410-9421. doi: 10.1039/c9nr02185j.
Although various nanomaterials have been developed for cancer theranostics, there remains a key challenge for effective integration of therapeutic drugs and diagnostic agents into a single multicomponent nanoparticle via a simple and scalable approach. Moreover, the bottlenecks of nanoformulation in composition controllability, colloidal stability, drug loading capability and batch-to-batch repeatability currently still hinder the clinical translation of nanomedicine. Herein, we report a coordination-driven flash nanocomplexation (cFNC) process to achieve scalable fabrication of doxorubicin-based metal-phenolic nanoparticles (DITH) with a hyaluronic acid surface layer through efficient control of coordination reaction kinetics in a rapid turbulent mixing. The optimized DITH exhibited a small hydrodynamic diameter (84 nm), narrow size distribution, high drug loading capacity (26.6%), high reproducibility and pH-triggered drug release behaviors. The studies indicated that DITH significantly increased cellular endocytosis mediated by CD44+ receptor targeting and accelerated intracellular drug release owing to the sensitivity of DITH to environmental pH stimuli. Furthermore, guided by T1-weighted magnetic resonance (MR) imaging function endowed by ferric ions, DITH exhibited prolonged blood circulation, enhanced tumor accumulation, improved therapeutic performance and decreased toxic side effects after intravenous injection in a MCF-7 tumor-bearing mice model. These results confirmed that the developed DITH is a promising vehicle for cancer theranostic applications, and our work provided a new strategy to promote the development of translational nanomedicine.
尽管已经开发出了各种纳米材料用于癌症治疗诊断,但仍然存在一个关键挑战,即如何通过简单且可扩展的方法将治疗药物和诊断剂有效整合到单个多组分纳米颗粒中。此外,纳米制剂在组成可控性、胶体稳定性、药物载药能力和批次间重复性方面的瓶颈仍然阻碍了纳米医学的临床转化。在这里,我们报告了一种配位驱动的闪式纳米复合(cFNC)工艺,通过在快速湍流混合中有效控制配位反应动力学,可规模化制备具有透明质酸表面层的基于阿霉素的金属多酚纳米颗粒(DITH)。优化后的 DITH 表现出较小的水动力直径(84nm)、较窄的粒径分布、较高的载药能力(26.6%)、较高的重现性和 pH 触发的药物释放行为。研究表明,DITH 通过 CD44+受体靶向介导的细胞内吞作用显著增加,并且由于 DITH 对环境 pH 刺激的敏感性而加速细胞内药物释放。此外,在 MCF-7 荷瘤小鼠模型中,基于铁离子赋予的 T1 加权磁共振(MR)成像功能,DITH 表现出延长的血液循环、增强的肿瘤积累、改善的治疗效果和降低的毒副作用。这些结果证实,所开发的 DITH 是癌症治疗诊断应用的一种有前途的载体,我们的工作为促进转化纳米医学的发展提供了一种新策略。
Mater Sci Eng C Mater Biol Appl. 2017-1-1
Chem Commun (Camb). 2019-2-7
Sci China Technol Sci. 2022
Mater Today (Kidlington). 2021
Pharmaceutics. 2019-11-28
Adv Drug Deliv Rev. 2019-7-19