From the Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida 32224.
Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, Berkeley, California 94720.
J Biol Chem. 2019 Jun 14;294(24):9476-9488. doi: 10.1074/jbc.RA119.008321. Epub 2019 Apr 30.
Tissue inhibitors of metalloproteinases (TIMPs) are natural inhibitors of matrix metalloproteinases (MMPs), enzymes that contribute to cancer and many inflammatory and degenerative diseases. The TIMP N-terminal domain binds and inhibits an MMP catalytic domain, but the role of the TIMP C-terminal domain in MMP inhibition is poorly understood. Here, we employed yeast surface display for directed evolution of full-length human TIMP-1 to develop MMP-3-targeting ultrabinders. By simultaneously incorporating diversity into both domains, we identified TIMP-1 variants that were up to 10-fold improved in binding MMP-3 compared with WT TIMP-1, with inhibition constants ( ) in the low picomolar range. Analysis of individual and paired mutations from the selected TIMP-1 variants revealed cooperative effects between distant residues located on the N- and C-terminal TIMP domains, positioned on opposite sides of the interaction interface with MMP-3. Crystal structures of MMP-3 complexes with TIMP-1 variants revealed conformational changes in TIMP-1 near the cooperative mutation sites. Affinity was strengthened by cinching of a reciprocal "tyrosine clasp" formed between the N-terminal domain of TIMP-1 and proximal MMP-3 interface and by changes in secondary structure within the TIMP-1 C-terminal domain that stabilize interdomain interactions and improve complementarity to MMP-3. Our protein engineering and structural studies provide critical insight into the cooperative function of TIMP domains and the significance of peripheral TIMP epitopes in MMP recognition. Our findings suggest new strategies to engineer TIMP proteins for therapeutic applications, and our directed evolution approach may also enable exploration of functional domain interactions in other protein systems.
组织金属蛋白酶抑制剂(TIMPs)是基质金属蛋白酶(MMPs)的天然抑制剂,MMPs 酶参与癌症和许多炎症及退行性疾病的发生。TIMP 的 N 端结构域与 MMP 的催化结构域结合并抑制其活性,但是 TIMP 的 C 端结构域在 MMP 抑制中的作用尚未完全清楚。在这里,我们利用酵母表面展示技术对全长人 TIMP-1 进行定向进化,以开发靶向 MMP-3 的超结合剂。通过同时在两个结构域中引入多样性,我们鉴定出与野生型 TIMP-1 相比,结合 MMP-3 的能力提高了 10 倍的 TIMP-1 变体,其抑制常数( )达到皮摩尔级。对从选定的 TIMP-1 变体中分离出的单个和配对突变进行分析,揭示了位于 TIMP-1 的 N 和 C 端结构域上的远距离残基之间的协同作用,这些残基位于与 MMP-3 相互作用界面的相对侧。与 TIMP-1 变体形成的 MMP-3 复合物的晶体结构显示,在协同突变位点附近 TIMP-1 发生构象变化。亲和力的增强是通过 TIMP-1 的 N 端结构域和 MMP-3 近端界面之间形成的相互“酪氨酸扣”的扣紧以及 TIMP-1 的 C 端结构域中二级结构的变化实现的,这两种变化稳定了结构域间相互作用并提高了与 MMP-3 的互补性。我们的蛋白质工程和结构研究为 TIMP 结构域的协同功能以及 TIMP 外围表位在 MMP 识别中的重要性提供了重要的见解。我们的研究结果为针对治疗应用工程化 TIMP 蛋白提供了新的策略,并且我们的定向进化方法也可能有助于探索其他蛋白系统中功能结构域的相互作用。