Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
Cell and Molecular Biology Graduate Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
Nature. 2019 May;569(7756):423-427. doi: 10.1038/s41586-019-1172-9. Epub 2019 May 1.
Mutations in the retinoblastoma (RB) tumour suppressor pathway are a hallmark of cancer and a prevalent feature of lung adenocarcinoma. Although RB was the first tumour suppressor to be identified, the molecular and cellular basis that underlies selection for persistent RB loss in cancer remains unclear. Methods that reactivate the RB pathway using inhibitors of cyclin-dependent kinases CDK4 and CDK6 are effective in some cancer types and are currently under evaluation for the treatment of lung adenocarcinoma. Whether RB pathway reactivation will have therapeutic effects and whether targeting CDK4 and CDK6 is sufficient to reactivate RB pathway activity in lung cancer remains unknown. Here we model RB loss during lung adenocarcinoma progression and pathway reactivation in established oncogenic KRAS-driven tumours in mice. We show that RB loss enables cancer cells to bypass two distinct barriers during tumour progression. First, RB loss abrogates the requirement for amplification of the MAPK signal during malignant progression. We identify CDK2-dependent phosphorylation of RB as an effector of MAPK signalling and critical mediator of resistance to inhibition of CDK4 and CDK6. Second, RB inactivation deregulates the expression of cell-state-determining factors, facilitates lineage infidelity and accelerates the acquisition of metastatic competency. By contrast, reactivation of RB reprograms advanced tumours towards a less metastatic cell state, but is nevertheless unable to halt cancer cell proliferation and tumour growth due to adaptive rewiring of MAPK pathway signalling, which restores a CDK-dependent suppression of RB. Our study demonstrates the power of reversible gene perturbation approaches to identify molecular mechanisms of tumour progression, causal relationships between genes and the tumour suppressive programs that they control and critical determinants of successful cancer therapy.
视网膜母细胞瘤(RB)肿瘤抑制因子通路中的突变是癌症的一个标志,也是肺腺癌的一个普遍特征。尽管 RB 是第一个被鉴定出来的肿瘤抑制因子,但在癌症中选择持续 RB 缺失的分子和细胞基础仍不清楚。使用细胞周期蛋白依赖性激酶 4 和 6(CDK4 和 CDK6)抑制剂重新激活 RB 通路的方法在一些癌症类型中是有效的,目前正在评估其治疗肺腺癌的效果。RB 通路的重新激活是否会产生治疗效果,以及针对 CDK4 和 CDK6 是否足以重新激活肺癌中的 RB 通路活性,目前尚不清楚。在这里,我们在小鼠中建立了 KRAS 驱动的肿瘤模型,模拟肺腺癌进展过程中的 RB 缺失和通路的重新激活。我们发现,RB 缺失使癌细胞在肿瘤进展过程中能够绕过两个不同的障碍。首先,RB 缺失消除了恶性进展过程中 MAPK 信号放大的要求。我们确定 CDK2 依赖性 RB 磷酸化是 MAPK 信号的效应因子,是对 CDK4 和 CDK6 抑制的抗性的关键介质。其次,RB 失活使细胞状态决定因子的表达失调,促进谱系失实,并加速获得转移能力。相比之下,RB 的重新激活使晚期肿瘤向转移能力较低的细胞状态重新编程,但由于 MAPK 通路信号的适应性重布线,仍然无法阻止癌细胞增殖和肿瘤生长,这种重布线恢复了 CDK 依赖性的 RB 抑制。我们的研究表明,可逆基因干扰方法在识别肿瘤进展的分子机制、基因与它们控制的肿瘤抑制程序之间的因果关系以及成功癌症治疗的关键决定因素方面具有强大的作用。