Division of Chemistry and Structural Biology, Institute for Molecular Bioscience , The University of Queensland , Brisbane , Queensland 4072 , Australia.
Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience , The University of Queensland , Brisbane , Queensland 4072 , Australia.
Chem Rev. 2019 Sep 11;119(17):9861-9914. doi: 10.1021/acs.chemrev.8b00807. Epub 2019 May 2.
Cyclization is an important post-translational modification of peptides and proteins that confers key advantages such as protection from proteolytic degradation, altered solubility, membrane permeability, bioavailability, and especially restricted conformational freedom in water that allows the peptide backbone to adopt the major secondary structure elements found in proteins. Non-ribosomal synthesis in bacteria, fungi, and plants or synthetic chemistry can introduce unnatural amino acids and non-peptidic constraints that modify peptide backbones and side chains to fine-tune cyclic peptide structure. Structures can be potentially altered further upon binding to a protein in biological environments. Here we analyze three-dimensional crystal structures for 211 bioactive cyclic peptides bound to 65 different proteins. The protein-bound cyclic peptides were examined for similarities and differences in bonding modes, for main-chain and side-chain structure, and for the importance of polarity, hydrogen bonds, hydrophobic effects, and water molecules in interactions with proteins. Many protein-bound cyclic peptides show backbone structures like those (strands, sheets, turns, helices, loops, or distorted variations) found at protein-protein binding interfaces. However, the notion of macrocycles simply as privileged scaffolds that primarily project side-chain substituents for complementary interactions with proteins is dispelled here. Unlike small-molecule drugs, the cyclic peptides do not rely mainly upon hydrophobic and van der Waals interactions for protein binding; they also use their main chain and side chains to form polar contacts and hydrogen bonds with proteins. Compared to small-molecule ligands, cyclic peptides can bind across larger, polar, and water-exposed protein surface areas, making many more contacts that can increase affinity, selectivity, biological activity, and ligand-receptor residence time. Cyclic peptides have a greater capacity than small-molecule drugs to modulate protein-protein interfaces that involve large, shallow, dynamic, polar, and water-exposed protein surfaces.
环化是一种重要的肽和蛋白质的翻译后修饰,它赋予了许多关键优势,如保护免受蛋白水解降解、改变溶解度、膜通透性、生物利用度,尤其是在水中限制构象自由度,使肽骨架能够采用蛋白质中发现的主要二级结构元件。细菌、真菌和植物中的非核糖体合成或合成化学可以引入非天然氨基酸和非肽约束,修饰肽骨架和侧链,以微调环肽结构。在生物环境中与蛋白质结合后,结构可以进一步改变。在这里,我们分析了 211 种与 65 种不同蛋白质结合的生物活性环肽的三维晶体结构。研究了与蛋白质结合的环肽在结合模式、主链和侧链结构以及极性、氢键、疏水相互作用和与蛋白质相互作用的水分子的重要性方面的相似性和差异性。许多与蛋白质结合的环肽显示出与蛋白质-蛋白质结合界面上发现的类似的骨架结构(链、片层、转角、螺旋、环或扭曲的变化)。然而,这里摒弃了大环化合物仅仅作为主要突出侧链取代基以与蛋白质互补相互作用的特权支架的概念。与小分子药物不同,环肽主要不是依赖于疏水相互作用和范德华相互作用与蛋白质结合;它们还利用其主链和侧链与蛋白质形成极性接触和氢键。与小分子配体相比,环肽可以结合更大、更极性、暴露于水的蛋白质表面区域,形成更多的可以增加亲和力、选择性、生物活性和配体-受体停留时间的接触。环肽比小分子药物更有能力调节涉及大、浅、动态、极性和暴露于水的蛋白质表面的蛋白质-蛋白质界面。