Program for Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea.
Lab Chip. 2019 Jun 11;19(12):2071-2080. doi: 10.1039/c9lc00148d.
Recent advances in microfluidic organ-on-a-chip technology have enabled the growth of 3D microphysiological systems for diverse biological studies. Fabrication and usage limitations inherent to conventional soft lithographic polydimethylsiloxane (PDMS) based microfluidic platforms drive demands for more accessible, standardized, and mass producible platforms for wider applications. Here, we introduce a novel injection-molded plastic array 3D culture (IMPACT) platform, a microfluidic system designed for easy and diverse patterning of 3D cellular hydrogel. The flexibility of the IMPACT platform enabled simultaneous high-content morphological profiling of the effect of nine different types of tumor cells on vascular formation. Moreover, screening of three different known anti-tumor drugs (5-FU, axitinib and cetuximab) was done at various delivered dosages. We observed distinct and expected molecular mechanism dependent response on both tumor and vasculature in response to treatment, confirming the applicability of the IMPACT as high-content drug testing tool. Therefore, we propose IMPACT as the next generation of 3D microfluidic co-culture platform compatible with any biological, clinical, and pharmaceutical investigations requiring robust high-throughput and high-content assays.
微流控器官芯片技术的最新进展使得能够为各种生物学研究生长 3D 微生理系统。传统的软光刻聚二甲基硅氧烷 (PDMS) 基微流控平台固有的制造和使用限制推动了对更易于访问、标准化和可大规模生产的平台的需求,以实现更广泛的应用。在这里,我们介绍了一种新颖的注塑塑料阵列 3D 培养 (IMPACT) 平台,这是一种微流控系统,旨在轻松且多样化地对 3D 细胞水凝胶进行图案设计。IMPACT 平台的灵活性使得能够同时对九种不同类型的肿瘤细胞对血管形成的影响进行高内涵形态分析。此外,还在不同的给药剂量下对三种不同的已知抗肿瘤药物 (5-FU、阿昔替尼和西妥昔单抗) 进行了筛选。我们观察到在治疗过程中肿瘤和血管均呈现出明显的、预期的、依赖于分子机制的反应,这证实了 IMPACT 作为高通量和高内涵药物检测工具的适用性。因此,我们提出 IMPACT 作为下一代 3D 微流控共培养平台,适用于任何需要强大高通量和高内涵分析的生物学、临床和药物研究。