Suppr超能文献

微流控芯片内培养:注塑成型的塑料三维培养芯片。

Microfluidics within a well: an injection-molded plastic array 3D culture platform.

机构信息

Division of WCU (World Class University) Multiscale Mechanical Design, Seoul National University, Seoul 08826, Republic of Korea.

出版信息

Lab Chip. 2018 Aug 7;18(16):2433-2440. doi: 10.1039/c8lc00336j.

Abstract

Polydimethylsiloxane (PDMS) has been widely used in fabricating microfluidic devices for prototyping and proof-of-concept experiments. Due to several material limitations, PDMS has not been widely adopted for commercial applications that require large-scale production. This paper describes a novel injection-molded plastic array 3D culture (IMPACT) platform that incorporates a microfluidic design to integrate patterned 3D cell cultures within a single 96-well (diameter = 9 mm) plate. Cell containing gels can be sequentially patterned by capillary-guided flow along the corner and narrow gaps designed within the 96-well form factor. Compared to PDMS-based hydrophobic burst valve designs, this work utilizes hydrophilic liquid guides to obtain rapid and reproducible patterned gels for co-cultures. When a liquid droplet (i.e. cell containing fibrin or collagen gel) is placed on a corner, spontaneous patterning is achieved within 1 second. Optimal dimensionless parameters required for successful capillary loading have been determined. To demonstrate the utility of the platform for 3D co-culture, angiogenesis experiments were performed by patterning HUVEC (human umbilical endothelial cells) and LF (lung fibroblasts) embedded in 3D fibrin gels. The angiogenic sprouts (with open lumen tip cells expressing junctional proteins) are comparable to those observed in PDMS based devices. The IMPACT device has the potential to provide a robust high-throughput experimental platform for vascularized microphysiological systems.

摘要

聚二甲基硅氧烷(PDMS)已广泛用于制造微流控设备,用于原型设计和概念验证实验。由于存在几种材料限制,PDMS 尚未广泛应用于需要大规模生产的商业应用中。本文描述了一种新颖的注塑塑料阵列 3D 培养(IMPACT)平台,该平台采用微流控设计,可将图案化的 3D 细胞培养集成在单个 96 孔(直径= 9mm)板中。含有细胞的凝胶可以通过沿着 96 孔形式因子内设计的角和窄间隙的毛细引导流进行顺序图案化。与基于 PDMS 的疏水性爆裂阀设计相比,这项工作利用亲水性液体引导来获得用于共培养的快速且可重复的图案化凝胶。当液滴(即含有纤维蛋白或胶原蛋白凝胶的细胞)放置在角上时,可在 1 秒内实现自发图案化。已经确定了成功进行毛细加载所需的最佳无量纲参数。为了展示该平台在 3D 共培养中的应用,通过在 3D 纤维蛋白凝胶中对 HUVEC(人脐静脉内皮细胞)和 LF(肺成纤维细胞)进行图案化来进行血管生成实验。血管生成芽(具有表达连接蛋白的开放腔尖端细胞)与在 PDMS 基装置中观察到的相似。IMPACT 设备有可能为血管化微生理系统提供强大的高通量实验平台。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验