Department of Statistical Science, University College London, London, UK.
Yale-NUS College, Singapore.
Stat Med. 2019 Jul 20;38(16):3053-3072. doi: 10.1002/sim.8169. Epub 2019 May 3.
Network meta-analysis (NMA) technique extends the standard meta-analysis methods, allowing pairwise comparison of all treatments in a network in the absence of head-to-head comparisons. Traditional NMA models consider a single endpoint for each trial. However, in many cases, trials in the network have different durations and/or report data at multiple time points. Moreover, these time points are often not the same for all trials. In this work, we review the most relevant methods that incorporate multiple time points and allow indirect comparisons of treatment effects across different longitudinal studies. In particular, we focus on the mixed treatment comparison developed by Dakin et al,[10] on the Bayesian evidence synthesis techniques-integrated two-component prediction developed by Ding et al,[11] and on the more recent method based on fractional polynomials by Jansen et al.[12] We highlight the main features of each model and illustrate them in simulations and in a real data application. Our study shows that methods based on fractional polynomials offer a flexible modeling strategy in most applications.
网络荟萃分析(NMA)技术扩展了标准荟萃分析方法,允许在没有头对头比较的情况下对网络中的所有治疗进行两两比较。传统的 NMA 模型考虑每个试验的单个终点。然而,在许多情况下,网络中的试验具有不同的持续时间和/或在多个时间点报告数据。此外,这些时间点并不总是适用于所有试验。在这项工作中,我们回顾了最相关的方法,这些方法纳入了多个时间点,并允许在不同的纵向研究中对治疗效果进行间接比较。特别是,我们关注由 Dakin 等人开发的混合治疗比较,[10] 由 Ding 等人开发的贝叶斯证据综合技术-集成两部分预测,[11] 以及最近基于分数多项式的方法由 Jansen 等人开发。[12] 我们强调了每个模型的主要特点,并在模拟和实际数据应用中进行了说明。我们的研究表明,基于分数多项式的方法在大多数应用中提供了灵活的建模策略。