Department of Radiology, University of California at Davis, Sacramento, CA 95817, United States of America.
Phys Med Biol. 2019 Sep 5;64(17):175023. doi: 10.1088/1361-6560/ab1f29.
Dynamic F-FDG PET with tracer kinetic modeling has the potential to noninvasively evaluate human liver inflammation using the FDG blood-to-tissue transport rate K . Accurate kinetic modeling of dynamic liver PET data and K quantification requires the knowledge of dual-blood input function from the hepatic artery and portal vein. While the arterial input function can be derived from the aortic region on dynamic PET images, it is difficult to extract the portal vein input function accurately from PET images. The optimization-derived dual-input kinetic modeling approach has been proposed to overcome this problem by jointly estimating the portal vein input function and FDG tracer kinetics from time activity curve fitting. In this paper, we further characterize the model properties by analyzing the structural identifiability of the model parameters using the Laplace transform and practical identifiability using computer simulation based on fourteen patient datasets. The theoretical analysis has indicated that all the kinetic parameters of the dual-input kinetic model are structurally identifiable, though subject to local solutions. The computer simulation results have shown that FDG K can be estimated reliably in the whole-liver region of interest with reasonable bias, standard deviation, and high correlation between estimated and original values, indicating of practical identifiability of K . The result has also demonstrated the correlation between K and histological liver inflammation scores is reliable. FDG K quantification by the optimization-derived dual-input kinetic model is promising for assessing liver inflammation.
动态 F-FDG PET 结合示踪剂动力学模型,有可能通过 FDG 的血液向组织的转运率 K ,非侵入性地评估人体肝脏炎症。准确的动态肝脏 PET 数据和 K 的动力学建模需要了解来自肝动脉和门静脉的双血输入函数。虽然动脉输入函数可以从动态 PET 图像中的主动脉区域得出,但很难从 PET 图像中准确地提取门静脉输入函数。优化衍生的双输入动力学建模方法通过联合估计门静脉输入函数和时间活动曲线拟合的 FDG 示踪剂动力学,来克服这个问题。在本文中,我们进一步通过使用拉普拉斯变换进行模型参数的结构可识别性分析,并基于 14 个患者数据集进行计算机模拟来分析实用可识别性,从而进一步描述了模型的性质。理论分析表明,尽管存在局部解,但双输入动力学模型的所有动力学参数都是结构可识别的。计算机模拟结果表明,在整个感兴趣的肝脏区域,FDG K 可以可靠地估计,具有合理的偏差、标准差和估计值与原始值之间的高相关性,表明 K 的实用可识别性。结果还表明,K 与组织学肝脏炎症评分之间的相关性是可靠的。通过优化衍生的双输入动力学模型进行 FDG K 定量,有望用于评估肝脏炎症。