Sala Elarre Pablo, Oyaga-Iriarte Esther, Yu Kenneth H, Baudin Vicky, Arbea Moreno Leire, Carranza Omar, Chopitea Ortega Ana, Ponz-Sarvise Mariano, Mejías Sosa Luis D, Rotellar Sastre Fernando, Larrea Leoz Blanca, Iragorri Barberena Yohana, Subtil Iñigo Jose C, Benito Boíllos Alberto, Pardo Fernando, Rodríguez Rodríguez Javier
Department of Medical Oncology, Clínica Universidad de Navarra, Pamplona, 31008 Navarra, Spain.
Department of Mathematics and Statistics, Pharmamodelling, Noain, 31110 Navarra, Spain.
Cancers (Basel). 2019 Apr 30;11(5):606. doi: 10.3390/cancers11050606.
Although surgical resection is the only potentially curative treatment for pancreatic cancer (PC), long-term outcomes of this treatment remain poor. The aim of this study is to describe the feasibility of a neoadjuvant treatment with induction polychemotherapy (IPCT) followed by chemoradiation (CRT) in resectable PC, and to develop a machine-learning algorithm to predict risk of relapse.
Forty patients with resectable PC treated in our institution with IPCT (based on mFOLFOXIRI, GEMOX or GEMOXEL) followed by CRT (50 Gy and concurrent Capecitabine) were retrospectively analyzed. Additionally, clinical, pathological and analytical data were collected in order to perform a 2-year relapse-risk predictive population model using machine-learning techniques.
A R0 resection was achieved in 90% of the patients. After a median follow-up of 33.5 months, median progression-free survival (PFS) was 18 months and median overall survival (OS) was 39 months. The 3 and 5-year actuarial PFS were 43.8% and 32.3%, respectively. The 3 and 5-year actuarial OS were 51.5% and 34.8%, respectively. Forty-percent of grade 3-4 IPCT toxicity, and 29.7% of grade 3 CRT toxicity were reported. Considering the use of granulocyte colony-stimulating factors, the number of resected lymph nodes, the presence of perineural invasion and the surgical margin status, a logistic regression algorithm predicted the individual 2-year relapse-risk with an accuracy of 0.71 (95% confidence interval [CI] 0.56-0.84, = 0.005). The model-predicted outcome matched 64% of the observed outcomes in an external dataset.
An intensified multimodal neoadjuvant approach (IPCT + CRT) in resectable PC is feasible, with an encouraging long-term outcome. Machine-learning algorithms might be a useful tool to predict individual risk of relapse. A small sample size and therapy heterogeneity remain as potential limitations.
尽管手术切除是胰腺癌(PC)唯一可能治愈的治疗方法,但该治疗的长期效果仍然较差。本研究的目的是描述新辅助治疗(诱导多药化疗(IPCT)后进行放化疗(CRT))在可切除PC中的可行性,并开发一种机器学习算法来预测复发风险。
回顾性分析了在我们机构接受IPCT(基于mFOLFOXIRI、GEMOX或GEMOXEL)后进行CRT(50 Gy并同步使用卡培他滨)治疗的40例可切除PC患者。此外,收集了临床、病理和分析数据,以便使用机器学习技术建立一个预测2年复发风险的人群模型。
90%的患者实现了R0切除。中位随访33.5个月后,中位无进展生存期(PFS)为18个月,中位总生存期(OS)为39个月。3年和5年的精算PFS分别为43.8%和32.3%。3年和5年的精算OS分别为51.5%和34.8%。报告了40%的3-4级IPCT毒性和29.7%的3级CRT毒性。考虑到粒细胞集落刺激因子的使用、切除淋巴结的数量、神经周围侵犯的存在以及手术切缘状态,逻辑回归算法预测个体2年复发风险的准确率为0.71(95%置信区间[CI]0.56-0.84,P = 0.005)。在外部数据集中,模型预测结果与64%的观察结果相符。
强化多模式新辅助治疗方法(IPCT + CRT)在可切除PC中是可行的,长期效果令人鼓舞。机器学习算法可能是预测个体复发风险的有用工具。样本量小和治疗异质性仍然是潜在的局限性。