Suppr超能文献

基于跨诊断的社区样本的灰质体积与儿童期创伤关系的机器学习分析。

Machine Learning Analysis of the Relationships Between Gray Matter Volume and Childhood Trauma in a Transdiagnostic Community-Based Sample.

机构信息

Laureate Institute for Brain Research, Tulsa, Oklahoma; VA Mid-Atlantic Mental Illness Research, Education, and Clinical Center, Durham VA Healthcare System, Durham, North Carolina; Duke Brain Imaging and Analysis Center, Duke Medical University, Durham, North Carolina.

Laureate Institute for Brain Research, Tulsa, Oklahoma; Department of Community Medicine, University of Tulsa, Tulsa, Oklahoma; Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma.

出版信息

Biol Psychiatry Cogn Neurosci Neuroimaging. 2019 Aug;4(8):734-742. doi: 10.1016/j.bpsc.2019.03.001. Epub 2019 Mar 13.

Abstract

BACKGROUND

Childhood trauma is a significant risk factor for adult psychopathology. Previous investigations have implicated childhood trauma-related structural changes in anterior cingulate, dorsolateral prefrontal and orbitofrontal cortex, and hippocampus. Using a large transdiagnostic community sample, the goal of this investigation was to differentially associate regional gray matter (GM) volume with childhood trauma severity specifically, distinct from adult psychopathology.

METHODS

A total of 577 non-treatment-seeking adults (n = 207 men) completed diagnostic, childhood trauma, and structural magnetic resonance imaging assessments with regional GM volume estimated using FreeSurfer. Elastic net analysis was conducted in a nested cross-validation framework, with GM volumes, adult psychopathology, age, education, sex, and magnetic resonance imaging coil type as potential predictors for childhood trauma severity.

RESULTS

Elastic net identified age, education, sex, medical condition, adult psychopathology, and 13 GM regions as predictors of childhood trauma severity. GM regions identified included right caudate; left pallidum; bilateral insula and cingulate sulcus; left superior, inferior, and orbital frontal regions; and regions within temporal and parietal lobes and cerebellum.

CONCLUSIONS

Results from this large, transdiagnostic sample implicate GM volume in regions central to current neurobiological theories of trauma (e.g., prefrontal cortex) as well as additional regions involved in reward, interoceptive, attentional, and sensory processing (e.g., striatal, insula, and parietal/occipital cortices). Future longitudinal studies examining the functional impact of structural changes in this broader network of regions are needed to clarify the role each may play in longer-term outcomes following trauma.

摘要

背景

儿童时期创伤是成年期精神病理学的一个重要风险因素。先前的研究表明,与儿童期创伤相关的结构变化与前扣带、背外侧前额叶和眶额皮质以及海马体有关。本研究使用大型跨诊断社区样本,旨在特异性地将区域灰质(GM)体积与儿童期创伤严重程度相关联,与成年期精神病理学区分开来。

方法

共有 577 名非治疗性寻求帮助的成年人(n=207 名男性)完成了诊断、儿童期创伤和结构磁共振成像评估,使用 FreeSurfer 估计了区域 GM 体积。弹性网络分析是在嵌套交叉验证框架中进行的,GM 体积、成年期精神病理学、年龄、教育、性别和磁共振成像线圈类型作为儿童期创伤严重程度的潜在预测因子。

结果

弹性网络确定了年龄、教育、性别、医疗状况、成年期精神病理学和 13 个 GM 区域是儿童期创伤严重程度的预测因子。确定的 GM 区域包括右侧尾状核;左侧苍白球;双侧岛叶和扣带沟;左侧额上、额下和眶额区域;以及颞叶和顶叶以及小脑的区域。

结论

这项来自大型跨诊断样本的研究结果表明,GM 体积与当前创伤神经生物学理论(例如前额叶皮层)的核心区域以及涉及奖励、内脏感觉、注意力和感觉处理的其他区域(例如纹状体、岛叶和顶叶/枕叶皮层)有关。需要进行未来的纵向研究,以检查该更广泛区域网络中结构变化的功能影响,以阐明每个区域在创伤后长期结果中可能发挥的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80bb/6688962/af8ef2ce8c7f/nihms-1523805-f0001.jpg

相似文献

引用本文的文献

3
Community-engaged artificial intelligence research: A scoping review.社区参与式人工智能研究:一项范围综述。
PLOS Digit Health. 2024 Aug 23;3(8):e0000561. doi: 10.1371/journal.pdig.0000561. eCollection 2024 Aug.

本文引用的文献

2
Interoception and Mental Health: A Roadmap.内感受与心理健康:路线图。
Biol Psychiatry Cogn Neurosci Neuroimaging. 2018 Jun;3(6):501-513. doi: 10.1016/j.bpsc.2017.12.004. Epub 2017 Dec 28.
3
Abnormal target detection and novelty processing neural response in posttraumatic stress disorder.创伤后应激障碍的异常目标检测和新颖性处理神经反应。
Prog Neuropsychopharmacol Biol Psychiatry. 2018 Jul 13;85:54-61. doi: 10.1016/j.pnpbp.2018.04.003. Epub 2018 Apr 16.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验