Suppr超能文献

能够代谢除草剂异丙甲草胺的微生物。

Microorganisms capable of metabolizing the herbicide metolachlor.

作者信息

Saxena A, Zhang R W, Bollag J M

出版信息

Appl Environ Microbiol. 1987 Feb;53(2):390-6. doi: 10.1128/aem.53.2.390-396.1987.

Abstract

We screened several strains of microorganisms and microbial populations for their ability to mineralize or transform the herbicide metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)-acetami de] because such cultures would potentially be useful in the cleanup of contaminated sites. Although we used various inocula and enrichment culture techniques, we were not able to isolate microorganisms that could mineralize metolachlor. However, strains of Bacillus circulans, Bacillus megaterium, Fusarium sp., Mucor racemosus, and an actinomycete were found to transform metolachlor. Several metabolites could be determined with high-performance liquid chromatography. The tolerance of the strains to high concentrations of metolachlor was also evaluated for the usefulness of the strains for decontamination. Tolerance of the actinomycete to metolachlor concentrations over 200 ppm (200 micrograms/ml) was low and could not be increased by doubling the sucrose concentration in the growth medium or by using a large biomass as inoculum. However, a Fusarium sp. could grow and transform metolachlor up to a concentration of 300 ppm.

摘要

我们筛选了几种微生物菌株和微生物群体,以评估它们矿化或转化除草剂异丙甲草胺[2-氯-N-(2-乙基-6-甲基苯基)-N-(2-甲氧基-1-甲基乙基)-乙酰胺]的能力,因为这类培养物可能有助于清理受污染场地。尽管我们采用了各种接种物和富集培养技术,但仍未能分离出能够矿化异丙甲草胺的微生物。不过,我们发现环状芽孢杆菌、巨大芽孢杆菌、镰刀菌属、总状毛霉和一种放线菌菌株能够转化异丙甲草胺。通过高效液相色谱法可以测定几种代谢产物。还评估了这些菌株对高浓度异丙甲草胺的耐受性,以确定其用于去污的适用性。该放线菌对浓度超过200 ppm(200微克/毫升)的异丙甲草胺耐受性较低,且通过将生长培养基中的蔗糖浓度加倍或使用大量生物量作为接种物都无法提高其耐受性。然而,一种镰刀菌属菌株能够在浓度高达300 ppm的异丙甲草胺环境中生长并进行转化。

相似文献

1
Microorganisms capable of metabolizing the herbicide metolachlor.
Appl Environ Microbiol. 1987 Feb;53(2):390-6. doi: 10.1128/aem.53.2.390-396.1987.
2
Biodegradation and mineralization of metolachlor and alachlor by Candida xestobii.
J Agric Food Chem. 2011 Jan 26;59(2):619-27. doi: 10.1021/jf103508w. Epub 2010 Dec 29.
3
Microbial adsorption of cyanazine and metolachlor.
J Environ Sci Health B. 1998 Jan;33(1):1-15. doi: 10.1080/03601239809373126.
4
Metabolism of metolachlor by fungal cultures.
J Agric Food Chem. 2002 Jan 30;50(3):499-505. doi: 10.1021/jf010850d.
5
Metabolism of metolachlor by the fungus Cunninghamella elegans.
Arch Environ Contam Toxicol. 1997 Feb;32(2):117-25. doi: 10.1007/s002449900163.
6
Biodegradation and toxicity of a maize herbicide mixture: mesotrione, nicosulfuron and S-metolachlor.
J Hazard Mater. 2018 Jul 15;354:42-53. doi: 10.1016/j.jhazmat.2018.04.045. Epub 2018 Apr 21.
7
Acetochlor-a comparative study on parameters governing the potential for water pollution.
J Environ Sci Health B. 1997 Sep;32(5):645-58. doi: 10.1080/03601239709373107.
9
Reduction in metolachlor and degradate concentrations in shallow groundwater through cover crop use.
J Agric Food Chem. 2009 Oct 28;57(20):9658-67. doi: 10.1021/jf9021527.
10
Degradation of metolachlor in crude extract of Aspergillus flavus.
J Environ Sci Health B. 2004 May;39(4):653-64. doi: 10.1081/pfc-200026901.

引用本文的文献

3
Potential impacts of seasonal variation on atrazine and metolachlor persistence in andisol soil.
Environ Monit Assess. 2015 Dec;187(12):760. doi: 10.1007/s10661-015-4986-4. Epub 2015 Nov 18.
4
Effects of the herbicide alachlor on soil microbial activities.
Ecotoxicology. 1994 Mar;3(1):4-10. doi: 10.1007/BF00121384.
5
Removal of alachlor in anoxic soil slurries and related alteration of the active communities.
Environ Sci Pollut Res Int. 2013 Feb;20(2):1089-105. doi: 10.1007/s11356-012-0999-5. Epub 2012 Jun 22.
7
Characterization of acetanilide herbicides degrading bacteria isolated from tea garden soil.
Microb Ecol. 2008 Apr;55(3):435-43. doi: 10.1007/s00248-007-9289-z. Epub 2007 Jul 28.
8
A structure-activity study with aryl acylamidases.
Appl Environ Microbiol. 1994 Nov;60(11):3939-44. doi: 10.1128/aem.60.11.3939-3944.1994.
9
Sorption and metabolism of metolachlor by a bacterial community.
Appl Environ Microbiol. 1989 Mar;55(3):733-40. doi: 10.1128/aem.55.3.733-740.1989.
10
Transformation of Metalaxyl by the Fungus Syncephalastrum racemosum.
Appl Environ Microbiol. 1989 Jan;55(1):66-71. doi: 10.1128/aem.55.1.66-71.1989.

本文引用的文献

1
Bacterial degradation of diphenylmethane, a DDT model substrate.
Appl Microbiol. 1970 Oct;20(4):608-11. doi: 10.1128/am.20.4.608-611.1970.
2
Cometabolism of low concentrations of propachlor, alachlor, and cycloate in sewage and lake water.
Appl Environ Microbiol. 1985 Apr;49(4):737-43. doi: 10.1128/aem.49.4.737-743.1985.
3
Bacterial and fungal cometabolism of 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT) and its breakdown products.
Appl Environ Microbiol. 1985 Mar;49(3):509-16. doi: 10.1128/aem.49.3.509-516.1985.
4
Degradation of alachlor by a soil fungus, Chaetomium globosum.
J Agric Food Chem. 1975 Jan-Feb;23(1):77-81. doi: 10.1021/jf60197a029.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验