Suppr超能文献

单分子荧光研究无序蛋白质和液相分离。

Single-molecule fluorescence studies of intrinsically disordered proteins and liquid phase separation.

机构信息

Department of Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, United States; Department of Biology and Biological Engineering, Division of Chemical Biology, Chalmers Institute of Technology, 412 96 Gothenburg, Sweden.

Department of Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, United States.

出版信息

Biochim Biophys Acta Proteins Proteom. 2019 Oct;1867(10):980-987. doi: 10.1016/j.bbapap.2019.04.007. Epub 2019 May 2.

Abstract

Intrinsically disordered proteins (IDPs) are ubiquitous in proteomes and serve in a range of cellular functions including signaling, regulation, transport and enzyme function. IDP misfunction and aggregation are also associated with several diseases including neurodegenerative diseases and cancer. During the past decade, single-molecule methods have become popular for detailed biophysical and structural studies of these complex proteins. This work has included recent applications to cellular liquid-liquid phase separation (LLPS), relevant for functional dynamics of membraneless organelles such as the nucleolus and stress granules. In this concise review, we cover the conceptual motivations for development and application of single-molecule fluorescence methods for such IDP studies. We follow with a few key examples of systems and biophysical problems that have been addressed, and conclude with thoughts for emerging and future directions.

摘要

无规卷曲蛋白(IDP)在蛋白质组中普遍存在,在信号转导、调控、运输和酶功能等多种细胞功能中发挥作用。IDP 的功能障碍和聚集也与包括神经退行性疾病和癌症在内的几种疾病有关。在过去的十年中,单分子方法已成为研究这些复杂蛋白质的详细生物物理和结构的热门方法。这些工作包括最近在细胞液-液相分离(LLPS)方面的应用,这与无膜细胞器(如核仁、应激颗粒)的功能动力学相关。在这篇简明的综述中,我们介绍了为 IDP 研究开发和应用单分子荧光方法的概念性动机。随后我们介绍了一些已解决的系统和生物物理问题的关键实例,并对新兴和未来的方向进行了思考。

相似文献

1
Single-molecule fluorescence studies of intrinsically disordered proteins and liquid phase separation.
Biochim Biophys Acta Proteins Proteom. 2019 Oct;1867(10):980-987. doi: 10.1016/j.bbapap.2019.04.007. Epub 2019 May 2.
3
Membraneless organelles: P granules in Caenorhabditis elegans.
Traffic. 2019 Jun;20(6):373-379. doi: 10.1111/tra.12644. Epub 2019 Apr 11.
5
Liquid-liquid phase separation of tau: From molecular biophysics to physiology and disease.
Protein Sci. 2021 Jul;30(7):1294-1314. doi: 10.1002/pro.4093. Epub 2021 May 14.
6
Ubiquitin Modulates Liquid-Liquid Phase Separation of UBQLN2 via Disruption of Multivalent Interactions.
Mol Cell. 2018 Mar 15;69(6):965-978.e6. doi: 10.1016/j.molcel.2018.02.004. Epub 2018 Mar 8.
7
Liquid-Liquid Phase Separation in Crowded Environments.
Int J Mol Sci. 2020 Aug 17;21(16):5908. doi: 10.3390/ijms21165908.
8
Single-Molecule FRET of Intrinsically Disordered Proteins.
Annu Rev Phys Chem. 2020 Apr 20;71:391-414. doi: 10.1146/annurev-physchem-012420-104917. Epub 2020 Feb 25.
9
Single Molecule FRET: A Powerful Tool to Study Intrinsically Disordered Proteins.
Biomolecules. 2018 Nov 8;8(4):140. doi: 10.3390/biom8040140.
10
Electrostatic modulation of hnRNPA1 low-complexity domain liquid-liquid phase separation and aggregation.
Protein Sci. 2021 Jul;30(7):1408-1417. doi: 10.1002/pro.4108. Epub 2021 May 22.

引用本文的文献

1
Liquid-liquid phase separation: an emerging perspective on the tumorigenesis, progression, and treatment of tumors.
Front Immunol. 2025 Jun 26;16:1604015. doi: 10.3389/fimmu.2025.1604015. eCollection 2025.
3
From disorder comes function: Regulation of small GTPase function by intrinsically disordered lipidated membrane anchor.
Curr Opin Struct Biol. 2024 Aug;87:102869. doi: 10.1016/j.sbi.2024.102869. Epub 2024 Jun 28.
4
Characterization of Intrinsically Disordered Proteins in Healthy and Diseased States by Nuclear Magnetic Resonance.
Rev Recent Clin Trials. 2024;19(3):176-188. doi: 10.2174/0115748871271420240213064251.
5
Toward Accurate Simulation of Coupling between Protein Secondary Structure and Phase Separation.
J Am Chem Soc. 2024 Jan 10;146(1):342-357. doi: 10.1021/jacs.3c09195. Epub 2023 Dec 19.
6
Advances in mass spectrometry to unravel the structure and function of protein condensates.
Nat Protoc. 2023 Dec;18(12):3653-3661. doi: 10.1038/s41596-023-00900-0. Epub 2023 Oct 31.
7
Extreme dynamics in a biomolecular condensate.
Nature. 2023 Jul;619(7971):876-883. doi: 10.1038/s41586-023-06329-5. Epub 2023 Jul 19.
8
Deciphering molecular mechanisms of phase separation in RNA biology by single-molecule biophysical technologies.
Acta Biochim Biophys Sin (Shanghai). 2023 Jun 19;55(7):1034-1041. doi: 10.3724/abbs.2023113.
9
Illuminating Intrinsically Disordered Proteins with Integrative Structural Biology.
Biomolecules. 2023 Jan 7;13(1):124. doi: 10.3390/biom13010124.
10
Molecular and environmental determinants of biomolecular condensate formation.
Nat Chem Biol. 2022 Dec;18(12):1319-1329. doi: 10.1038/s41589-022-01175-4. Epub 2022 Nov 18.

本文引用的文献

1
Physical Chemistry of Cellular Liquid-Phase Separation.
Chemistry. 2019 Apr 17;25(22):5600-5610. doi: 10.1002/chem.201805093. Epub 2019 Feb 7.
2
A Chemical Chaperone Decouples TDP-43 Disordered Domain Phase Separation from Fibrillation.
Biochemistry. 2018 Dec 18;57(50):6822-6826. doi: 10.1021/acs.biochem.8b01051. Epub 2018 Dec 10.
3
Diffusion-limited association of disordered protein by non-native electrostatic interactions.
Nat Commun. 2018 Nov 9;9(1):4707. doi: 10.1038/s41467-018-06866-y.
4
Transition path times of coupled folding and binding reveal the formation of an encounter complex.
Nat Commun. 2018 Nov 9;9(1):4708. doi: 10.1038/s41467-018-07043-x.
5
Fold or not to fold upon binding - does it really matter?
Curr Opin Struct Biol. 2019 Feb;54:19-25. doi: 10.1016/j.sbi.2018.09.008. Epub 2018 Oct 16.
6
Three-Color Single-Molecule FRET and Fluorescence Lifetime Analysis of Fast Protein Folding.
J Phys Chem B. 2018 Dec 13;122(49):11702-11720. doi: 10.1021/acs.jpcb.8b07768. Epub 2018 Oct 10.
7
Direct Visualization of the Conformational Dynamics of Single Influenza Hemagglutinin Trimers.
Cell. 2018 Aug 9;174(4):926-937.e12. doi: 10.1016/j.cell.2018.05.050. Epub 2018 Jun 28.
8
Site-Specific Three-Color Labeling of α-Synuclein via Conjugation to Uniquely Reactive Cysteines during Assembly by Native Chemical Ligation.
Cell Chem Biol. 2018 Jun 21;25(6):797-801.e4. doi: 10.1016/j.chembiol.2018.03.009. Epub 2018 Apr 19.
9
mRNA structure determines specificity of a polyQ-driven phase separation.
Science. 2018 May 25;360(6391):922-927. doi: 10.1126/science.aar7432. Epub 2018 Apr 12.
10
Self-interaction of NPM1 modulates multiple mechanisms of liquid-liquid phase separation.
Nat Commun. 2018 Feb 26;9(1):842. doi: 10.1038/s41467-018-03255-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验