Suppr超能文献

生物分子凝聚物中的极端动力学。

Extreme dynamics in a biomolecular condensate.

机构信息

Department of Biochemistry, University of Zurich, Zurich, Switzerland.

Department of Physics, University of Zurich, Zurich, Switzerland.

出版信息

Nature. 2023 Jul;619(7971):876-883. doi: 10.1038/s41586-023-06329-5. Epub 2023 Jul 19.

Abstract

Proteins and nucleic acids can phase-separate in the cell to form concentrated biomolecular condensates. The functions of condensates span many length scales: they modulate interactions and chemical reactions at the molecular scale, organize biochemical processes at the mesoscale and compartmentalize cells. Understanding the underlying mechanisms of these processes will require detailed knowledge of the rich dynamics across these scales. The mesoscopic dynamics of biomolecular condensates have been extensively characterized, but their behaviour at the molecular scale has remained more elusive. Here, as an example of biomolecular phase separation, we study complex coacervates of two highly and oppositely charged disordered human proteins. Their dense phase is 1,000 times more concentrated than the dilute phase, and the resulting percolated interaction network leads to a bulk viscosity 300 times greater than that of water. However, single-molecule spectroscopy optimized for measurements within individual droplets reveals that at the molecular scale, the disordered proteins remain exceedingly dynamic, with their chain configurations interconverting on submicrosecond timescales. Massive all-atom molecular dynamics simulations reproduce the experimental observations and explain this apparent discrepancy: the underlying interactions between individual charged side chains are short-lived and exchange on a pico- to nanosecond timescale. Our results indicate that, despite the high macroscopic viscosity of phase-separated systems, local biomolecular rearrangements required for efficient reactions at the molecular scale can remain rapid.

摘要

蛋白质和核酸可以在细胞中相分离形成浓缩的生物分子凝聚物。凝聚物的功能跨越多个长度尺度:它们在分子尺度上调节相互作用和化学反应,在介观尺度上组织生化过程,并在细胞水平上分隔细胞。理解这些过程的潜在机制需要详细了解这些尺度上的丰富动力学。生物分子凝聚物的介观动力学已经得到了广泛的描述,但它们在分子尺度上的行为仍然更加难以捉摸。在这里,我们以两种高度带电和带相反电荷的人类无序蛋白质的复杂共凝聚物为例进行研究。它们的密集相比稀释相浓缩 1000 倍,由此产生的渗透相互作用网络导致其体粘度比水大 300 倍。然而,针对单个液滴内测量进行优化的单分子光谱学揭示,在分子尺度上,无序蛋白质仍然非常动态,其链构象在亚微秒时间尺度上相互转换。大规模的全原子分子动力学模拟再现了实验观察结果,并解释了这种明显的差异:单个带电侧链之间的基础相互作用是短暂的,在皮秒到纳秒的时间尺度上发生交换。我们的结果表明,尽管相分离系统的宏观粘度很高,但分子尺度上进行有效反应所需的局部生物分子重排仍可以保持快速。

相似文献

1
Extreme dynamics in a biomolecular condensate.生物分子凝聚物中的极端动力学。
Nature. 2023 Jul;619(7971):876-883. doi: 10.1038/s41586-023-06329-5. Epub 2023 Jul 19.
2
Hydrogen-Bonded Network of Water in Phase-Separated Biomolecular Condensates.相分离生物分子凝聚体中水的氢键网络。
J Phys Chem Lett. 2024 Aug 1;15(30):7724-7734. doi: 10.1021/acs.jpclett.4c01153. Epub 2024 Jul 23.
3
Heterogeneous Slowdown of Dynamics in the Condensate of an Intrinsically Disordered Protein.固有无序蛋白凝聚体中动力学的异质减速。
J Phys Chem Lett. 2024 Nov 14;15(45):11244-11251. doi: 10.1021/acs.jpclett.4c02142. Epub 2024 Nov 1.
5
Coarse-Grained Model of Disordered RNA for Simulations of Biomolecular Condensates.用于生物分子凝聚物模拟的无序RNA粗粒度模型
J Chem Theory Comput. 2025 Mar 11;21(5):2766-2779. doi: 10.1021/acs.jctc.4c01646. Epub 2025 Feb 26.

引用本文的文献

3
Clustering within a single-component biomolecular condensate.单组分生物分子凝聚物中的聚集
bioRxiv. 2025 Aug 22:2025.08.18.670948. doi: 10.1101/2025.08.18.670948.
7
The rheology and interfacial properties of biomolecular condensates.生物分子凝聚物的流变学和界面性质
Biophys Rev. 2025 Jun 30;17(3):867-891. doi: 10.1007/s12551-025-01326-6. eCollection 2025 Jun.
9
All-atom simulations of biomolecular condensates.生物分子凝聚物的全原子模拟。
Curr Opin Struct Biol. 2025 Aug;93:103101. doi: 10.1016/j.sbi.2025.103101. Epub 2025 Jul 3.

本文引用的文献

4
Protein condensation diseases: therapeutic opportunities.蛋白质凝聚疾病:治疗机会。
Nat Commun. 2022 Sep 22;13(1):5550. doi: 10.1038/s41467-022-32940-7.
9
Synthetic biomolecular condensates to engineer eukaryotic cells.合成生物分子凝聚物工程真核细胞。
Curr Opin Chem Biol. 2021 Oct;64:174-181. doi: 10.1016/j.cbpa.2021.08.005. Epub 2021 Sep 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验