Suppr超能文献

高斯过程轨迹学习与个体化步态运动的合成。

Gaussian Process Trajectory Learning and Synthesis of Individualized Gait Motions.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2019 Jun;27(6):1236-1245. doi: 10.1109/TNSRE.2019.2914095. Epub 2019 Apr 30.

Abstract

This paper proposes a Gaussian process-based method for trajectory learning and generation of individualized gait motions at arbitrary user-designated walking speeds, intended to be used in generating reference motions for robotic gait rehabilitation systems. We utilize a nonlinear dimension reduction technique based on Gaussian process dynamical models (GPDMs), in which the internal dynamics is modeled as a second-order Markov process evolving in a lower-dimensional latent space. After the GPDM parameters are identified with training data obtained from gait motions of healthy subjects walking at different speeds, our method then employs Gaussian process regression (GPR) to predict the initial two states of the latent space dynamics from any arbitrary desired walking speed and the anthropometric parameters of the test subject. Motions are then generated by directly mapping the latent space dynamics to joint trajectories. Experimental studies involving more than 100 subjects indicate that our method generates gait patterns with 30% less mean square prediction errors compared to recent state-of-the-art methods, while also allowing for arbitrary user-specified walking speeds.

摘要

本文提出了一种基于高斯过程的方法,用于学习轨迹并生成任意用户指定行走速度的个性化步态运动,旨在为机器人步态康复系统生成参考运动。我们利用基于高斯过程动力模型(GPDM)的非线性降维技术,其中内部动力学被建模为在低维潜在空间中演变的二阶马尔可夫过程。在用不同速度行走的健康受试者的步态运动获得的训练数据确定 GPDM 参数后,我们的方法使用高斯过程回归(GPR)根据任意期望行走速度和测试对象的人体测量参数来预测潜在空间动力学的初始两个状态。然后,通过直接将潜在空间动力学映射到关节轨迹来生成运动。涉及 100 多个受试者的实验研究表明,与最近的最先进方法相比,我们的方法生成的步态模式的均方预测误差减少了 30%,同时也允许任意用户指定的行走速度。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验