Fischer Stefan, Mehlenbacher Randy D, Lay Alice, Siefe Chris, Alivisatos A Paul, Dionne Jennifer A
Department of Materials Science and Engineering , Stanford University , 496 Lomita Mall , Stanford , California 94305 , United States.
Department of Applied Physics , Stanford University , 348 Via Pueblo Mall , Stanford , California 94305 , United States.
Nano Lett. 2019 Jun 12;19(6):3878-3885. doi: 10.1021/acs.nanolett.9b01057. Epub 2019 May 10.
The optical efficiency of lanthanide-based upconversion is intricately related to the crystalline host lattice. Different crystal fields interacting with the electron clouds of the lanthanides can significantly affect transition probabilities between the energy levels. Here, we investigate six distinct alkaline-earth rare-earth fluoride host materials (MLn F, MLnF) for infrared-to-visible upconversion, focusing on nanoparticles of CaYF, CaLuF, SrYF, SrLuF, BaYF, and BaLuF doped with Yb and Er. We first synthesize ∼5 nm upconverting cores of each material via a thermal decomposition method. Then we introduce a dropwise hot-injection method to grow optically inert MYF shell layers around the active cores. Five distinct shell thicknesses are considered for each host material, resulting in 36 unique, monodisperse upconverting nanomaterials each with size below ∼15 nm. The upconversion quantum yield (UCQY) is measured for all core/shell nanoparticles as a function of shell thickness and compared with hexagonal (β-phase) NaGdF, a traditional upconverting host lattice. While the UCQY of core nanoparticles is below the detection limit (<10%), it increases by 4 to 5 orders of magnitude as the shell thickness approaches 4-6 nm. The UCQY values of our cubic MLnF nanoparticles meet or exceed the β-NaGdF reference sample. Across all core/shell samples, SrLuF nanoparticles are the most efficient, with UCQY values of 0.53% at 80 W/cm for cubic nanoparticles with ∼11 nm edge length. This efficiency is 5 times higher than our β-NaGdF reference material with comparable core size and shell thickness. Our work demonstrates efficient and bright upconversion in ultrasmall alkaline-earth-based nanoparticles, with applications spanning biological imaging and optical sensing.
基于镧系元素的上转换的光学效率与晶体主体晶格密切相关。与镧系元素的电子云相互作用的不同晶体场会显著影响能级之间的跃迁概率。在此,我们研究了六种不同的碱土金属稀土氟化物主体材料(MLnF、MLnF)用于红外到可见光的上转换,重点关注掺杂Yb和Er的CaYF、CaLuF、SrYF、SrLuF、BaYF和BaLuF纳米颗粒。我们首先通过热分解法合成了每种材料的约5纳米上转换核。然后我们引入逐滴热注入法在活性核周围生长光学惰性的MYF壳层。对于每种主体材料,考虑了五种不同的壳层厚度,从而得到36种独特的、单分散的上转换纳米材料,每种材料的尺寸都在约15纳米以下。测量了所有核/壳纳米颗粒的上转换量子产率(UCQY)作为壳层厚度的函数,并与传统的上转换主体晶格六方(β相)NaGdF进行了比较。虽然核纳米颗粒的UCQY低于检测限(<10%),但随着壳层厚度接近4 - 6纳米,其增加了4到5个数量级。我们的立方MLnF纳米颗粒的UCQY值达到或超过了β-NaGdF参考样品。在所有核/壳样品中,SrLuF纳米颗粒效率最高,对于边长约为11纳米的立方纳米颗粒,在80 W/cm²时UCQY值为0.53%。这种效率比具有可比核尺寸和壳层厚度的β-NaGdF参考材料高5倍。我们的工作展示了超小碱土基金属纳米颗粒中高效且明亮的上转换,其应用涵盖生物成像和光学传感。