Chen Guanying, Damasco Jossana, Qiu Hailong, Shao Wei, Ohulchanskyy Tymish Y, Valiev Rashid R, Wu Xiang, Han Gang, Wang Yan, Yang Chunhui, Ågren Hans, Prasad Paras N
Institute for Lasers, Photonics, and Biophotonics, University at Buffalo, State University of New York , Buffalo, New York 14260, United States.
School of Chemical Engineering and Technology, Harbin Institute of Technology , Harbin, Heilongjiang 150001, P. R. China.
Nano Lett. 2015 Nov 11;15(11):7400-7. doi: 10.1021/acs.nanolett.5b02830. Epub 2015 Oct 23.
Lanthanide-doped upconversion nanoparticles hold promises for bioimaging, solar cells, and volumetric displays. However, their emission brightness and excitation wavelength range are limited by the weak and narrowband absorption of lanthanide ions. Here, we introduce a concept of multistep cascade energy transfer, from broadly infrared-harvesting organic dyes to sensitizer ions in the shell of an epitaxially designed core/shell inorganic nanostructure, with a sequential nonradiative energy transfer to upconverting ion pairs in the core. We show that this concept, when implemented in a core-shell architecture with suppressed surface-related luminescence quenching, yields multiphoton (three-, four-, and five-photon) upconversion quantum efficiency as high as 19% (upconversion energy conversion efficiency of 9.3%, upconversion quantum yield of 4.8%), which is about ~100 times higher than typically reported efficiency of upconversion at 800 nm in lanthanide-based nanostructures, along with a broad spectral range (over 150 nm) of infrared excitation and a large absorption cross-section of 1.47 × 10(-14) cm(2) per single nanoparticle. These features enable unprecedented three-photon upconversion (visible by naked eye as blue light) of an incoherent infrared light excitation with a power density comparable to that of solar irradiation at the Earth surface, having implications for broad applications of these organic-inorganic core/shell nanostructures with energy-cascaded upconversion.
镧系元素掺杂的上转换纳米粒子在生物成像、太阳能电池和立体显示方面具有应用前景。然而,它们的发射亮度和激发波长范围受到镧系离子弱且窄带吸收的限制。在此,我们引入了一种多步级联能量转移的概念,即从广泛吸收红外光的有机染料转移到外延设计的核壳无机纳米结构壳层中的敏化剂离子,然后通过连续的非辐射能量转移到核内的上转换离子对。我们表明,当在具有抑制表面相关发光猝灭的核壳结构中实施这一概念时,可产生高达19%的多光子(三光子、四光子和五光子)上转换量子效率(上转换能量转换效率为9.3%,上转换量子产率为4.8%),这比基于镧系元素的纳米结构在800nm处通常报道的上转换效率高出约100倍,同时具有宽光谱范围(超过150nm)的红外激发以及单个纳米粒子1.47×10(-14) cm(2)的大吸收截面。这些特性使得在与地球表面太阳辐射相当的功率密度下,能够实现前所未有的非相干红外光激发的三光子上转换(肉眼可见蓝光),这对这些具有能量级联上转换的有机 - 无机核壳纳米结构的广泛应用具有重要意义。