Nikolova Dessislava, Calhoun David M, Liu Yang, Rumley Sébastien, Novack Ari, Baehr-Jones Tom, Hochberg Michael, Bergman Keren
Department of Electrical Engineering, Columbia University, 530 West 120th Street, New York, NY 10027, USA.
Coriant Advanced Technology Group, 171 Madison Avenue, New York, NY 10016, USA.
Microsyst Nanoeng. 2017 Jan 16;3:16071. doi: 10.1038/micronano.2016.71. eCollection 2017.
Integrated photonics offers the possibility of compact, low energy, bandwidth-dense interconnects for large port count spatial optical switches, facilitating flexible and energy efficient data movement in future data communications systems. To achieve widespread adoption, intimate integration with electronics has to be possible, requiring switch design using standard microelectronic foundry processes and available devices. We report on the feasibility of a switch fabric comprised of ubiquitous silicon photonic building blocks, opening the possibility to combine technologies, and materials towards a new path for switch fabric design. Rather than focus on integrating all devices on a single silicon chip die to achieve large port count optical switching, this work shifts the focus towards innovative packaging and integration schemes. In this work, we demonstrate 1×8 and 8×1 microring-based silicon photonic switch building blocks with software control, providing the feasibility of a full 8×8 architecture composed of silicon photonic building blocks. The proposed switch is fully non-blocking, has path-independent insertion loss, low crosstalk, and is straightforward to control. We further analyze this architecture and compare it with other common switching architectures for varying underlying technologies and radices, showing that the proposed architecture favorably scales to very large port counts when considering both crosstalk and architectural footprint. Separating a switch fabric into functional building blocks via multiple photonic integrated circuits offers the advantage of piece-wise manufacturing, packaging, and assembly, potentially reducing the number of optical I/O and electrical contacts on a single die.
集成光子学为大型端口数空间光开关提供了紧凑、低能耗、带宽密集型互连的可能性,有助于在未来数据通信系统中实现灵活且节能的数据移动。为了实现广泛应用,必须能够与电子器件紧密集成,这就要求采用标准微电子制造工艺和现有器件进行开关设计。我们报告了一种由普遍存在的硅光子构建模块组成的交换矩阵的可行性,为结合多种技术和材料开辟了一条通往交换矩阵设计新路径的可能性。这项工作并非专注于将所有器件集成在单个硅芯片管芯上以实现大型端口数光交换,而是将重点转向创新的封装和集成方案。在这项工作中,我们展示了具有软件控制功能的基于1×8和8×1微环的硅光子开关构建模块,证明了由硅光子构建模块组成完整8×8架构的可行性。所提出的开关完全无阻塞,具有与路径无关的插入损耗、低串扰,并且易于控制。我们进一步分析了这种架构,并将其与其他针对不同基础技术和基数的常见交换架构进行比较,结果表明,在考虑串扰和架构占用面积时,所提出的架构能够很好地扩展到非常大的端口数。通过多个光子集成电路将交换矩阵分离为功能构建模块,具有分段制造、封装和组装的优势,有可能减少单个管芯上的光I/O和电接触数量。