Suppr超能文献

聚类分析免疫组化是一种强大的非小细胞肺癌工具,并揭示了一个独特的、免疫特征定义的亚组。

Cluster Analysis According to Immunohistochemistry is a Robust Tool for Non-Small Cell Lung Cancer and Reveals a Distinct, Immune Signature-defined Subgroup.

机构信息

Institute of Pathology, Hospital Bayreuth, Preuschwitzerstrasse, Bayreuth, Germany.

Department of Internal Medicine, Division of Hematology and Oncology, Medical University Innsbruck, Anichstrasse, Innsbruck.

出版信息

Appl Immunohistochem Mol Morphol. 2020 Apr;28(4):274-283. doi: 10.1097/PAI.0000000000000751.

Abstract

Clustering in medicine is the subgrouping of a cohort according to specific phenotypical or genotypical traits. For breast cancer and lymphomas, clustering by gene expression profiles has already resulted in important prognostic and predictive subgroups. For non-small cell lung cancer (NSCLC), however, little is known. We performed a cluster analysis on a cohort of 365 surgically resected, well-documented NSCLC patients, which was followed-up for a median of 62 months, incorporating 70 expressed proteins and several genes. Our data reveal that tumor grading by architecture is significant, that large cell carcinoma is likely not a separate entity, and that an immune signature cluster exists. For squamous cell carcinomas, a prognostically relevant cluster with poorer outcome was found, defined by a high CD4/CD8 ratio and lower presence of granzyme B+ tumor-infiltrating lymphocytes (TIL). This study shows that clustering analysis is a useful tool for verifying established characteristics and generating new insights for NSCLC. Importantly, for one "immune signature" cluster, the signature of the TIL (especially the amount of CD8+ TIL) was more crucial than the histologic or any other phenotypical aspect. This may be an important finding toward explaining why only a fraction of eligible patients respond to immunomodulating anticancer therapies.

摘要

聚类分析在医学中是指根据特定的表型或基因型特征对队列进行亚组划分。对于乳腺癌和淋巴瘤,根据基因表达谱进行聚类已经产生了重要的预后和预测亚组。然而,对于非小细胞肺癌(NSCLC),我们知之甚少。我们对 365 例手术切除的 NSCLC 患者进行了聚类分析,这些患者的中位随访时间为 62 个月,纳入了 70 种表达蛋白和几个基因。我们的数据表明,肿瘤结构分级具有重要意义,大细胞癌可能不是一个独立的实体,并且存在免疫特征聚类。对于鳞状细胞癌,我们发现了一个预后相关的集群,其特点是 CD4/CD8 比值高,颗粒酶 B+肿瘤浸润淋巴细胞(TIL)数量低。这项研究表明,聚类分析是验证 NSCLC 既定特征和产生新见解的有用工具。重要的是,对于一个“免疫特征”聚类,TIL 的特征(尤其是 CD8+TIL 的数量)比组织学或任何其他表型方面更为关键。这可能是一个重要的发现,可以解释为什么只有一部分符合条件的患者对免疫调节抗癌治疗有反应。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验