Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, Campus Triolet, Place Eugène Bataillon, 34095 Montpellier cedex 5, France.
Chem Rev. 2019 Jun 26;119(12):7529-7609. doi: 10.1021/acs.chemrev.8b00479. Epub 2019 May 6.
Organometallic complexes: these two words jump to the mind of the chemist and are directly associated with their utility in catalysis or as a pharmaceutical. Nevertheless, to be able to use them, it is necessary to synthesize them, and it is not always a small matter. Typically, synthesis is via solution chemistry, using a round-bottom flask and a magnetic or mechanical stirrer. This review takes stock of alternative technologies currently available in laboratories that facilitate the synthesis of such complexes. We highlight five such technologies: mechanochemistry, also known as solvent-free chemistry, uses a mortar and pestle or a ball mill; microwave activation can drastically reduce reaction times; ultrasonic activation promotes chemical reactions because of cavitation phenomena; photochemistry, which uses light radiation to initiate reactions; and continuous flow chemistry, which is increasingly used to simplify scale-up. While facilitating the synthesis of organometallic compounds, these enabling technologies also allow access to compounds that cannot be obtained in any other way. This shows how the paradigm is changing and evolving toward new technologies, without necessarily abandoning the round-bottom flask. A bright future is ahead of the organometallic chemist, thanks to these novel technologies.
化学家们一看到这两个词,就会直接联想到它们在催化或制药方面的应用。然而,要想使用它们,就必须对其进行合成,而这并不总是一件容易的事情。通常,合成是通过溶液化学方法,使用圆底烧瓶和磁力或机械搅拌器来完成。本篇综述对目前实验室中可用的、有助于此类配合物合成的替代技术进行了总结。我们重点介绍了其中的五种技术:机械化学,也称为无溶剂化学,使用研钵和杵或球磨机;微波激活可以大大缩短反应时间;超声波激活由于空化现象而促进化学反应;光化学,利用光辐射引发反应;以及连续流动化学,越来越多地用于简化放大。这些使能技术不仅促进了金属有机化合物的合成,还使那些无法通过其他方式获得的化合物成为可能。这表明范式正在朝着新技术转变和发展,而不一定需要放弃圆底烧瓶。由于这些新技术,金属有机化学家的前景一片光明。