Ten Vadim S, Ratner Veniamin
Division of Neonatology, Department of Pediatrics, Columbia University Medical Center, New York, NY, United States.
Division of Neonatology, Department of Pediatrics, Icahn Mount Sinai School of Medicine, New York, NY, United States.
Paediatr Respir Rev. 2020 Apr;34:37-45. doi: 10.1016/j.prrv.2019.04.001. Epub 2019 Apr 12.
This review summarizes current understanding of mitochondrial bioenergetic dysfunction applicable to mechanisms of lung diseases and outlines challenges and future directions in this rapidly emerging field. Although the role of mitochondria extends beyond the term of cellular "powerhouse", energy generation remains the most fundamental function of these organelles. It is not counterintuitive to propose that intact energy supply is important for favorable cellular fate following pulmonary insult. In this review, the discussion of mitochondrial dysfunction focuses on those molecular mechanisms that alter cellular bioenergetics in the lungs: (a) inhibition of mitochondrial respiratory chain, (b) mitochondrial leak and uncoupling, (c) alteration of mitochondrial Ca handling, (d) mitochondrial production of reactive oxygen species and self-oxidation. The discussed lung diseases were selected according to their pathological nature and relevance to pediatrics: Acute lung injury (ALI), defined as acute parenchymal lung disease associated with cellular demise and inflammation (Acute Respiratory Distress Syndrome, ARDS, Pneumonia), alveolar developmental failure (Bronchopulmonary Dysplasia, BPD or chronic lung disease in premature infants), obstructive airway diseases (Bronchial asthma) and vascular remodeling affecting pulmonary circulation (Pulmonary Hypertension, PH). The analysis highlights primary mechanisms of mitochondrial bioenergetic dysfunction contributing to the disease-specific pulmonary insufficiency and proposes potential therapeutic targets.
本综述总结了目前对适用于肺部疾病机制的线粒体生物能量功能障碍的理解,并概述了这一迅速发展领域中的挑战和未来方向。尽管线粒体的作用超出了细胞“动力源”这一范畴,但能量产生仍是这些细胞器最基本的功能。提出完整的能量供应对肺部损伤后细胞的良好转归很重要,这并非违反直觉。在本综述中,对线粒体功能障碍的讨论集中于那些改变肺部细胞生物能量学的分子机制:(a)线粒体呼吸链的抑制;(b)线粒体泄漏和解偶联;(c)线粒体钙处理的改变;(d)线粒体活性氧的产生和自身氧化。所讨论的肺部疾病是根据其病理性质以及与儿科的相关性来选择的:急性肺损伤(ALI),定义为与细胞死亡和炎症相关的急性实质性肺部疾病(急性呼吸窘迫综合征、ARDS、肺炎)、肺泡发育衰竭(支气管肺发育不良、BPD或早产儿慢性肺部疾病)、阻塞性气道疾病(支气管哮喘)以及影响肺循环的血管重塑(肺动脉高压、PH)。该分析突出了线粒体生物能量功能障碍导致疾病特异性肺功能不全的主要机制,并提出了潜在的治疗靶点。