Suppr超能文献

神经肌肉骨骼柔性多体模拟提供了一种高效的骨骼失效风险评估框架。

Neuro-musculoskeletal flexible multibody simulation yields a framework for efficient bone failure risk assessment.

机构信息

Department of Orthopaedics, University Medicine Rostock, Rostock, Germany.

Department of Modern Mechanical Engineering, Waseda University, Tokyo, Japan.

出版信息

Sci Rep. 2019 May 6;9(1):6928. doi: 10.1038/s41598-019-43028-6.

Abstract

Fragility fractures are a major socioeconomic problem. A non-invasive, computationally-efficient method for the identification of fracture risk scenarios under the representation of neuro-musculoskeletal dynamics does not exist. We introduce a computational workflow that integrates modally-reduced, quantitative CT-based finite-element models into neuro-musculoskeletal flexible multibody simulation (NfMBS) for early bone fracture risk assessment. Our workflow quantifies the bone strength via the osteogenic stresses and strains that arise due to the physiological-like loading of the bone under the representation of patient-specific neuro-musculoskeletal dynamics. This allows for non-invasive, computationally-efficient dynamic analysis over the enormous parameter space of fracture risk scenarios, while requiring only sparse clinical data. Experimental validation on a fresh human femur specimen together with femur strength computations that were consistent with literature findings provide confidence in the workflow: The simulation of an entire squat took only 38 s CPU-time. Owing to the loss (16% cortical, 33% trabecular) of bone mineral density (BMD), the strain measure that is associated with bone fracture increased by 31.4%; and yielded an elevated risk of a femoral hip fracture. Our novel workflow could offer clinicians with decision-making guidance by enabling the first combined in-silico analysis tool using NfMBS and BMD measurements for optimized bone fracture risk assessment.

摘要

脆性骨折是一个重大的社会经济问题。目前还没有一种非侵入性、计算效率高的方法,能够在神经肌肉骨骼动力学的表现下,识别骨折风险情况。我们引入了一种计算工作流程,将模态简化、基于定量 CT 的有限元模型集成到神经肌肉骨骼柔性多体模拟(NfMBS)中,以进行早期骨骨折风险评估。我们的工作流程通过在代表患者特定神经肌肉骨骼动力学的情况下,由于骨骼的生理样加载而产生的成骨应力和应变来量化骨骼强度。这允许在骨折风险情况的巨大参数空间中进行非侵入性、计算效率高的动态分析,而只需要稀疏的临床数据。在新鲜的人股骨标本上进行的实验验证以及与文献发现一致的股骨强度计算为该工作流程提供了信心:整个下蹲模拟仅需 38 秒 CPU 时间。由于骨矿物质密度(BMD)的损失(皮质 16%,小梁 33%),与骨骨折相关的应变测量值增加了 31.4%;并增加了股骨髋部骨折的风险。我们的新工作流程可以通过为优化的骨骨折风险评估提供使用 NfMBS 和 BMD 测量的首次联合的计算分析工具,为临床医生提供决策指导。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验