Suppr超能文献

肌肉骨骼多体仿真的力闭合机制建模。

Force Closure Mechanism Modeling for Musculoskeletal Multibody Simulation.

出版信息

IEEE Trans Biomed Eng. 2018 Nov;65(11):2471-2482. doi: 10.1109/TBME.2018.2800293. Epub 2018 Jan 31.

Abstract

OBJECTIVE

Neuro-musculoskeletal multibody simulation (NMBS) seeks to optimize decision-making for patients with neuro-musculoskeletal disorders. In clinical practice, however, the inter-subject variability and the inaccessibility for experimental testing impede the reliable model identification. These limitations motivate the novel modeling approach termed as force closure mechanism modeling (FCM).

METHODS

FCM expresses the dynamics between mutually articulating joint partners with respect to instantaneous screw axes (ISA) automatically reconstructed from their relative velocity state. Thereby, FCM reduces arbitrary open-chain multibody topologies to force closure n-link pendulums. Within a computational validation study on the human knee joint with implemented contact surfaces, we examine FCM as an underlying inverse dynamic model for computed muscle control. We evaluate predicted tibiofemoral joint quantities, i.e., kinematics and contact forces along with muscle moment arms, during muscle-induced knee motion against the classic hinge joint model and experimental studies.

RESULTS

Our NMBS study provided the proof-of-principle of the novel modeling approach. FCM freed us from assuming a certain joint formulation while correctly predicting the joint dynamics in agreement with the established methods. Although experimental results were closely predicted, owing to noise in the ISA estimation, muscle moment arms were overestimated (R = 0.84 < R = 0.97, RMSE = 13.18 mm > RMSE = 6.54 mm), identifying the robust ISA estimation as key to FCM.

CONCLUSION

FCM automatically derives the equations of motion in closed form. Moreover, it captures subject-specific joint function and, thereby, minimizes modeling and parameterization efforts.

SIGNIFICANCE

Model derivation becomes driven by quantitative data available in clinical settings so that FCM yields a promising framework toward subject-specific NMBS.

摘要

目的

神经肌肉骨骼多体模拟(NMBS)旨在优化神经肌肉骨骼疾病患者的决策。然而,在临床实践中,由于个体间的变异性和实验测试的不可访问性,可靠的模型识别受到阻碍。这些局限性促使提出了一种新的建模方法,称为力封闭机制建模(FCM)。

方法

FCM 用自动从相对速度状态重建的瞬时螺旋轴(ISA)来表达相互铰接关节伙伴之间的动力学。因此,FCM 将任意开链多体拓扑结构简化为力封闭的 n 链接摆。在一项基于实现的接触表面的人类膝关节计算验证研究中,我们将 FCM 作为计算肌肉控制的基础逆动力学模型进行检查。我们评估了肌肉诱导的膝关节运动期间预测的胫股关节量,即运动学和接触力以及肌肉力臂,与经典铰链关节模型和实验研究相对比。

结果

我们的 NMBS 研究为新的建模方法提供了原理证明。FCM 使我们能够摆脱对特定关节公式的假设,同时正确预测与既定方法一致的关节动力学。尽管实验结果得到了很好的预测,但由于 ISA 估计中的噪声,肌肉力臂被高估(R = 0.84 <R = 0.97,RMSE = 13.18 毫米 > RMSE = 6.54 毫米),这表明稳健的 ISA 估计是 FCM 的关键。

结论

FCM 自动以封闭形式推导出运动方程。此外,它捕获了特定于个体的关节功能,从而最大限度地减少了建模和参数化工作。

意义

模型推导由临床环境中可用的定量数据驱动,因此 FCM 为特定于个体的 NMBS 提供了一个有前途的框架。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验