Reichmann Jakob, Schnurpfeil Anne, Mittelstädt Sylvia, Jensen Patrick Moller, Dahl Vedrana Andersen, Dahl Anders Bjorholm, Weide Carina, von Campenhausen Eva, Dejea Hector, Tafforeau Paul, Werlein Christopher, Jonigk Danny, Ackermann Maximilian, Engel Klaus, Gallwas Julia, Dietz Alexander, Hasanov Mir Fuad, Salditt Tim
Institute for X-ray Physics, University of Göttingen, Göttingen 37077, Germany.
Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen 37973, Germany.
PNAS Nexus. 2025 Jan 3;4(1):pgae583. doi: 10.1093/pnasnexus/pgae583. eCollection 2025 Jan.
The human placenta exhibits a complex three-dimensional (3D) structure with a interpenetrating vascular tree and large internal interfacial area. In a unique and yet insufficiently explored way, this parenchymal structure enables its multiple functions as a respiratory, renal, and gastrointestinal multiorgan. The histopathological states are highly correlated with complications and health issues of mother, and fetus or newborn. Macroscopic and microscopic examination has so far been challenging to reconcile on the entire organ. Here we show that anatomical and histological scales can be bridged with the advent of hierarchical phase-contrast tomography and highly brilliant synchrotron radiation. To this end, we are exploiting the new capabilities offered by the BM18 beamline at ESRF, Grenoble for whole organ as well as the coherence beamline P10 at DESY, Hamburg for high-resolution, creating unique multiscale datasets. We also show that within certain limits, translation to CT instrumentation for 3D placenta examination becomes possible based on advanced preparation and CT protocols, while segmentation of the datasets by machine learning now remains the biggest challenge.
人类胎盘呈现出一种复杂的三维(3D)结构,具有相互交织的血管树和较大的内部界面面积。以一种独特但尚未充分探索的方式,这种实质结构使其能够作为呼吸、肾脏和胃肠道多器官发挥多种功能。组织病理学状态与母亲、胎儿或新生儿的并发症和健康问题高度相关。迄今为止,对整个器官进行宏观和微观检查一直具有挑战性。在这里,我们表明,随着分层相衬断层扫描和高亮度同步辐射的出现,可以弥合解剖学和组织学尺度。为此,我们正在利用法国格勒诺布尔欧洲同步辐射装置(ESRF)的BM18光束线提供的新功能对整个器官进行研究,并利用德国汉堡DESY的相干光束线P10进行高分辨率研究,从而创建独特的多尺度数据集。我们还表明,在一定限度内,基于先进的准备工作和CT协议,将其转换为用于3D胎盘检查的CT仪器成为可能,而目前通过机器学习对数据集进行分割仍然是最大的挑战。