Suppr超能文献

基于混合预测算法的无线医疗保健稳健决策支持系统。

A Robust Decision Support System for Wireless Healthcare Based on Hybrid Prediction Algorithm.

机构信息

Electronics and Communication Engineering, Anna University, Guindy, Chennai, India.

出版信息

J Med Syst. 2019 May 7;43(6):170. doi: 10.1007/s10916-019-1304-7.

Abstract

Analysis of healthcare data becomes a tedious task as large volume of unlabelled information is generated. In this article, an algorithm is proposed to reduce the complexity involved in analysis of healthcare data. The proposed algorithm predicts the health status of elderly from the data collected at health centres by utilizing PCA (principle component analysis) and SVM (support vector machine) algorithms. The performance of proposed algorithm is assessed by comparing it with well-known methods like quadratic Discriminant, linear Discriminant, logistic regression, KNN weighted and SVM medium Gaussian using F-measure. At that point, the pre-prepared information is subjected to the dimensionality decrease process by playing out the Feature Selection errand. So, chosen component analysis are investigated by the proposed work SVM-based enhanced recursive element determination, and its precision is assessed and contrasted with the other customary classifiers, for example, quadratic Discriminant, Linear Discriminant, Logistic Regression, KNN Weighted and SVM Medium Gaussian. Here, we built up a shrewd versatile information module for the remote procurement and transmission of EHR (Electronic Health Record) chronicles, together with an online watcher for showing the EHR datasets on a PC, advanced cell or tablet. So as to characterize the highlights required by clients, we demonstrated the elderly checking system in home and healing facility settings. Utilizing this data, we built up a portable information exchange module in light of a Raspberry Pi.

摘要

分析医疗保健数据成为一项繁琐的任务,因为会产生大量未标记的信息。在本文中,提出了一种算法来降低医疗保健数据分析的复杂性。该算法通过利用 PCA(主成分分析)和 SVM(支持向量机)算法,从健康中心收集的数据中预测老年人的健康状况。通过使用 F 度量与二次判别、线性判别、逻辑回归、KNN 加权和 SVM 中值高斯等知名方法进行比较,评估了所提出算法的性能。在这一点上,通过执行特征选择任务,对预先准备的信息进行降维处理。因此,所提出的基于 SVM 的增强递归元素确定工作研究了所选分量分析,并评估了其精度,并与其他常用分类器(如二次判别、线性判别、逻辑回归、KNN 加权和 SVM 中值高斯)进行了比较。在这里,我们为 EHR(电子健康记录)记录的远程采购和传输建立了一个智能通用信息模块,以及一个在 PC、高级手机或平板电脑上显示 EHR 数据集的在线查看器。为了描述客户所需的功能,我们在家中和医疗机构环境中展示了老年人检查系统。利用这些数据,我们基于 Raspberry Pi 开发了一个便携式信息交换模块。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验