Suppr超能文献

支持向量机建模在常见疾病预测中的应用:以糖尿病和糖尿病前期为例。

Application of support vector machine modeling for prediction of common diseases: the case of diabetes and pre-diabetes.

机构信息

National Office of Public Health Genomics, Coordinating Center for Health Promotion, Centers for Disease Control and Prevention, Atlanta, GA, USA.

出版信息

BMC Med Inform Decis Mak. 2010 Mar 22;10:16. doi: 10.1186/1472-6947-10-16.

Abstract

BACKGROUND

We present a potentially useful alternative approach based on support vector machine (SVM) techniques to classify persons with and without common diseases. We illustrate the method to detect persons with diabetes and pre-diabetes in a cross-sectional representative sample of the U.S. population.

METHODS

We used data from the 1999-2004 National Health and Nutrition Examination Survey (NHANES) to develop and validate SVM models for two classification schemes: Classification Scheme I (diagnosed or undiagnosed diabetes vs. pre-diabetes or no diabetes) and Classification Scheme II (undiagnosed diabetes or pre-diabetes vs. no diabetes). The SVM models were used to select sets of variables that would yield the best classification of individuals into these diabetes categories.

RESULTS

For Classification Scheme I, the set of diabetes-related variables with the best classification performance included family history, age, race and ethnicity, weight, height, waist circumference, body mass index (BMI), and hypertension. For Classification Scheme II, two additional variables--sex and physical activity--were included. The discriminative abilities of the SVM models for Classification Schemes I and II, according to the area under the receiver operating characteristic (ROC) curve, were 83.5% and 73.2%, respectively. The web-based tool-Diabetes Classifier was developed to demonstrate a user-friendly application that allows for individual or group assessment with a configurable, user-defined threshold.

CONCLUSIONS

Support vector machine modeling is a promising classification approach for detecting persons with common diseases such as diabetes and pre-diabetes in the population. This approach should be further explored in other complex diseases using common variables.

摘要

背景

我们提出了一种基于支持向量机(SVM)技术的潜在有用的替代方法,用于对患有和不患有常见疾病的人进行分类。我们以美国人口的横断面代表性样本为例,说明该方法用于检测糖尿病和糖尿病前期患者。

方法

我们使用了 1999-2004 年全国健康和营养检查调查(NHANES)的数据,为两种分类方案开发和验证了 SVM 模型:分类方案 I(已诊断或未诊断的糖尿病与糖尿病前期或无糖尿病)和分类方案 II(未诊断的糖尿病或糖尿病前期与无糖尿病)。SVM 模型用于选择可将个体最佳分类为这些糖尿病类别的变量集。

结果

对于分类方案 I,具有最佳分类性能的一组糖尿病相关变量包括家族史、年龄、种族和民族、体重、身高、腰围、体重指数(BMI)和高血压。对于分类方案 II,还包括两个额外的变量——性别和体力活动。根据接收者操作特征(ROC)曲线下的面积,SVM 模型对分类方案 I 和 II 的判别能力分别为 83.5%和 73.2%。开发了基于网络的工具-Diabetes Classifier,以展示一个用户友好的应用程序,允许个人或群体评估,具有可配置的、用户定义的阈值。

结论

支持向量机建模是一种很有前途的分类方法,可用于在人群中检测常见疾病,如糖尿病和糖尿病前期。应使用常见变量在其他复杂疾病中进一步探索这种方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2db/2850872/e99431b8fc14/1472-6947-10-16-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验