Suppr超能文献

ZrTe 中的三维量子霍尔效应和金属-绝缘体相变。

Three-dimensional quantum Hall effect and metal-insulator transition in ZrTe.

机构信息

Department of Physics and Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen, China.

International Center for Quantum Design of Functional Materials, Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Centre of Quantum Information and Quantum Physics, CAS Key Laboratory of Strongly Coupled Quantum Matter Physics, and Department of Physics, University of Science and Technology of China, Hefei, China.

出版信息

Nature. 2019 May;569(7757):537-541. doi: 10.1038/s41586-019-1180-9. Epub 2019 May 8.

Abstract

The discovery of the quantum Hall effect (QHE) in two-dimensional electronic systems has given topology a central role in condensed matter physics. Although the possibility of generalizing the QHE to three-dimensional (3D) electronic systems was proposed decades ago, it has not been demonstrated experimentally. Here we report the experimental realization of the 3D QHE in bulk zirconium pentatelluride (ZrTe) crystals. We perform low-temperature electric-transport measurements on bulk ZrTe crystals under a magnetic field and achieve the extreme quantum limit, where only the lowest Landau level is occupied, at relatively low magnetic fields. In this regime, we observe a dissipationless longitudinal resistivity close to zero, accompanied by a well-developed Hall resistivity plateau proportional to half of the Fermi wavelength along the field direction. This response is the signature of the 3D QHE and strongly suggests a Fermi surface instability driven by enhanced interaction effects in the extreme quantum limit. By further increasing the magnetic field, both the longitudinal and Hall resistivity increase considerably and display a metal-insulator transition, which represents another magnetic-field-driven quantum phase transition. Our findings provide experimental evidence of the 3D QHE and a promising platform for further exploration of exotic quantum phases and transitions in 3D systems.

摘要

二维电子系统中量子霍尔效应(QHE)的发现使拓扑学在凝聚态物理中占据了核心地位。尽管几十年来一直有人提出将 QHE 推广到三维(3D)电子系统的可能性,但尚未在实验中得到证实。在这里,我们报告了在体锆五碲化物(ZrTe)晶体中实现 3D QHE 的实验结果。我们在磁场下对体 ZrTe 晶体进行低温输运测量,在相对较低的磁场下达到了极端量子极限,即仅占据最低朗道能级。在这个极限下,我们观察到无耗散的纵向电阻率接近零,同时伴随着霍尔电阻率平台的良好发展,该平台与沿磁场方向的费米波长的一半成正比。这种响应是 3D QHE 的特征,强烈表明在极端量子极限下,增强的相互作用效应导致费米表面不稳定性。通过进一步增加磁场,纵向和霍尔电阻率都大大增加,并显示出金属-绝缘体转变,这代表了另一个磁场驱动的量子相变。我们的发现为 3D QHE 提供了实验证据,并为进一步探索 3D 系统中的奇异量子相和相变提供了一个有前途的平台。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验