Galeski S, Ehmcke T, Wawrzyńczak R, Lozano P M, Cho K, Sharma A, Das S, Küster F, Sessi P, Brando M, Küchler R, Markou A, König M, Swekis P, Felser C, Sassa Y, Li Q, Gu G, Zimmermann M V, Ivashko O, Gorbunov D I, Zherlitsyn S, Förster T, Parkin S S P, Wosnitza J, Meng T, Gooth J
Max Planck Institute for Chemical Physics of Solids, Dresden, Germany.
Institute for Theoretical Physics and Würzburg-Dresden Cluster of Excellence ct.qmat, Technische Universität Dresden, Dresden, Germany.
Nat Commun. 2021 May 27;12(1):3197. doi: 10.1038/s41467-021-23435-y.
The quantum Hall effect (QHE) is traditionally considered to be a purely two-dimensional (2D) phenomenon. Recently, however, a three-dimensional (3D) version of the QHE was reported in the Dirac semimetal ZrTe. It was proposed to arise from a magnetic-field-driven Fermi surface instability, transforming the original 3D electron system into a stack of 2D sheets. Here, we report thermodynamic, spectroscopic, thermoelectric and charge transport measurements on such ZrTe samples. The measured properties: magnetization, ultrasound propagation, scanning tunneling spectroscopy, and Raman spectroscopy, show no signatures of a Fermi surface instability, consistent with in-field single crystal X-ray diffraction. Instead, a direct comparison of the experimental data with linear response calculations based on an effective 3D Dirac Hamiltonian suggests that the quasi-quantization of the observed Hall response emerges from the interplay of the intrinsic properties of the ZrTe electronic structure and its Dirac-type semi-metallic character.
传统上,量子霍尔效应(QHE)被认为是一种纯粹的二维(2D)现象。然而,最近在狄拉克半金属ZrTe中报道了一种三维(3D)版本的QHE。有人提出它源于磁场驱动的费米面不稳定性,将原始的3D电子系统转变为一堆2D薄片。在这里,我们报告了对此类ZrTe样品进行的热力学、光谱学、热电和电荷输运测量。所测量的性质:磁化强度、超声波传播、扫描隧道光谱和拉曼光谱,均未显示费米面不稳定性的迹象,这与场内单晶X射线衍射结果一致。相反,将实验数据与基于有效3D狄拉克哈密顿量的线性响应计算进行直接比较表明,观察到的霍尔响应的准量子化源于ZrTe电子结构的固有性质与其狄拉克型半金属特性之间的相互作用。