Suppr超能文献

纳米级 X 射线衍射研究冲击压缩超离子态水冰。

Nanosecond X-ray diffraction of shock-compressed superionic water ice.

机构信息

Lawrence Livermore National Laboratory, Livermore, CA, USA.

Laboratory for Laser Energetics and Department of Mechanical Engineering, University of Rochester, Rochester, NY, USA.

出版信息

Nature. 2019 May;569(7755):251-255. doi: 10.1038/s41586-019-1114-6. Epub 2019 May 8.

Abstract

Since Bridgman's discovery of five solid water (HO) ice phases in 1912, studies on the extraordinary polymorphism of HO have documented more than seventeen crystalline and several amorphous ice structures, as well as rich metastability and kinetic effects. This unique behaviour is due in part to the geometrical frustration of the weak intermolecular hydrogen bonds and the sizeable quantum motion of the light hydrogen ions (protons). Particularly intriguing is the prediction that HO becomes superionic-with liquid-like protons diffusing through the solid lattice of oxygen-when subjected to extreme pressures exceeding 100 gigapascals and high temperatures above 2,000 kelvin. Numerical simulations suggest that the characteristic diffusion of the protons through the empty sites of the oxygen solid lattice (1) gives rise to a surprisingly high ionic conductivity above 100 Siemens per centimetre, that is, almost as high as typical metallic (electronic) conductivity, (2) greatly increases the ice melting temperature to several thousand kelvin, and (3) favours new ice structures with a close-packed oxygen lattice. Because confining such hot and dense HO in the laboratory is extremely challenging, experimental data are scarce. Recent optical measurements along the Hugoniot curve (locus of shock states) of water ice VII showed evidence of superionic conduction and thermodynamic signatures for melting, but did not confirm the microscopic structure of superionic ice. Here we use laser-driven shockwaves to simultaneously compress and heat liquid water samples to 100-400 gigapascals and 2,000-3,000 kelvin. In situ X-ray diffraction measurements show that under these conditions, water solidifies within a few nanoseconds into nanometre-sized ice grains that exhibit unambiguous evidence for the crystalline oxygen lattice of superionic water ice. The X-ray diffraction data also allow us to document the compressibility of ice at these extreme conditions and a temperature- and pressure-induced phase transformation from a body-centred-cubic ice phase (probably ice X) to a novel face-centred-cubic, superionic ice phase, which we name ice XVIII.

摘要

自 1912 年 Bridgman 发现五种固态水 (HO) 冰相以来,对 HO 异常多晶型性的研究记录了超过十七种结晶和几种非晶冰结构,以及丰富的亚稳性和动力学效应。这种独特的行为部分归因于弱分子间氢键的几何失配和轻氢离子(质子)的可观量子运动。特别有趣的是,当 HO 受到超过 100 千兆帕斯卡的极端压力和超过 2000 开尔文的高温时,它会变成超离子态——质子像液体一样在氧的晶格中扩散。数值模拟表明,质子通过氧晶格的空穴位点的特征扩散(1)导致离子电导率惊人地升高到 100 西门子每厘米以上,即几乎与典型的金属(电子)电导率一样高,(2)大大提高了冰的熔点至几千开尔文,并且(3)有利于具有紧密堆积氧晶格的新冰结构。由于在实验室中对如此热且致密的 HO 进行限制是极具挑战性的,因此实验数据很少。最近对水冰 VII 的 Hugoniot 曲线(冲击状态轨迹)的光学测量显示了超离子传导的证据和熔化的热力学特征,但没有证实超离子冰的微观结构。在这里,我们使用激光驱动的冲击波将液态水样品同时压缩和加热至 100-400 千兆帕斯卡和 2000-3000 开尔文。原位 X 射线衍射测量表明,在这些条件下,水在几纳秒内凝固成纳米级的冰颗粒,这些冰颗粒明确显示了超离子水冰的结晶氧晶格。X 射线衍射数据还使我们能够记录在这些极端条件下冰的可压缩性,以及从体心立方冰相(可能是冰 X)到新型面心立方、超离子冰相的温度和压力诱导的相变,我们将其命名为冰 XVIII。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验