Zhang Teng, Mazzio Katherine A, Wang Ruocun John, Lounasvuori Mailis, Al-Temimy Ameer, Amargianou Faidra, Mawass Mohamad-Assaad, Kronast Florian, Többens Daniel M, Lips Klaus, Petit Tristan, Gogotsi Yury
A.J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, USA.
Department of Chemistry, Humboldt University of Berlin, Berlin, Germany.
Nat Commun. 2025 Aug 12;16(1):7447. doi: 10.1038/s41467-025-62892-7.
Water under 2D confinement exhibits unique structural and dynamic behaviors distinct from bulk water, including phase transitions and altered hydrogen-bonding networks, making it of great scientific interest. While confinement in 2D materials like graphene, mica, or hexagonal boron nitride has been reported, their lack of intrinsic hydrophilicity or metallic conductivity limits their suitability for probing the interplay between confined water and electronic transport. MXenes, a family of 2D transition metal carbides and nitrides, overcome these limitations by combining high metallic conductivity (~10 S cm) with hydrophilicity, offering a unique platform to investigate confined water dynamics and their influence on electronic properties. Here, we show that temperature and confinement drive structural transitions of water within MXene interlayers, including the formation of localized ice clusters, amorphous ice, and dynamic hydrogen-bonded networks. These transformations disrupt stacking order, inducing a reversible metal-to-semiconductor transition and conductivity hysteresis in MXene films. Upon heating to 340 K, the dissociation of ice clusters restores interlayer spacing and metallic behavior. Our findings experimentally establish MXenes as an exceptional platform for studying the phase change of confined water, offering new insights into how nanoscale water dynamics modulate electronic properties and enabling the design of advanced devices with tunable interlayer interactions.
二维受限水表现出与体相水不同的独特结构和动力学行为,包括相变和改变的氢键网络,这使其具有极大的科学研究价值。虽然已有报道在石墨烯、云母或六方氮化硼等二维材料中存在受限情况,但它们缺乏内在亲水性或金属导电性,限制了它们用于探究受限水与电子输运之间相互作用的适用性。MXenes是一类二维过渡金属碳化物和氮化物,通过将高金属导电性(约10 S/cm)与亲水性相结合克服了这些限制,为研究受限水动力学及其对电子性质的影响提供了一个独特平台。在此,我们表明温度和受限作用驱动了MXene层间水的结构转变,包括局部冰簇、非晶冰和动态氢键网络的形成。这些转变破坏了堆积顺序,在MXene薄膜中诱导了可逆的金属到半导体转变和电导率滞后现象。加热到340 K时,冰簇的解离恢复了层间距和金属行为。我们的研究结果通过实验确立了MXenes作为研究受限水相变的卓越平台,为纳米级水动力学如何调节电子性质提供了新见解,并为设计具有可调层间相互作用的先进器件提供了可能。