Suppr超能文献

一种基于基因模块预测卵巢癌预后的集成策略。

An Ensemble Strategy to Predict Prognosis in Ovarian Cancer Based on Gene Modules.

作者信息

Gao Yi-Cheng, Zhou Xiong-Hui, Zhang Wen

机构信息

Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China.

出版信息

Front Genet. 2019 Apr 24;10:366. doi: 10.3389/fgene.2019.00366. eCollection 2019.

Abstract

Due to the high heterogeneity and complexity of cancer, it is still a challenge to predict the prognosis of cancer patients. In this work, we used a clustering algorithm to divide patients into different subtypes in order to reduce the heterogeneity of the cancer patients in each subtype. Based on the hypothesis that the gene co-expression network may reveal relationships among genes, some communities in the network could influence the prognosis of cancer patients and all the prognosis-related communities could fully reveal the prognosis of cancer patients. To predict the prognosis for cancer patients in each subtype, we adopted an ensemble classifier based on the gene co-expression network of the corresponding subtype. Using the gene expression data of ovarian cancer patients in TCGA (The Cancer Genome Atlas), three subtypes were identified. Survival analysis showed that patients in different subtypes had different survival risks. Three ensemble classifiers were constructed for each subtype. Leave-one-out and independent validation showed that our method outperformed control and literature methods. Furthermore, the function annotation of the communities in each subtype showed that some communities were cancer-related. Finally, we found that the current drug targets can partially support our method.

摘要

由于癌症具有高度的异质性和复杂性,预测癌症患者的预后仍然是一项挑战。在这项工作中,我们使用聚类算法将患者分为不同的亚型,以降低每个亚型中癌症患者的异质性。基于基因共表达网络可能揭示基因之间关系的假设,网络中的一些群落可能影响癌症患者的预后,并且所有与预后相关的群落可以充分揭示癌症患者的预后。为了预测每个亚型中癌症患者的预后,我们采用了基于相应亚型基因共表达网络的集成分类器。利用TCGA(癌症基因组图谱)中卵巢癌患者的基因表达数据,识别出了三个亚型。生存分析表明,不同亚型的患者具有不同的生存风险。为每个亚型构建了三个集成分类器。留一法和独立验证表明,我们的方法优于对照方法和文献中的方法。此外,每个亚型中群落的功能注释表明,一些群落与癌症相关。最后,我们发现当前的药物靶点可以部分支持我们的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/367a/6491874/75ecd8162d06/fgene-10-00366-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验