Suppr超能文献

通过人工智能方法检测卵巢癌复发的诊断 miRNA 面板。

A diagnostic miRNA panel to detect recurrence of ovarian cancer through artificial intelligence approaches.

机构信息

Department of Electrical Engineering, K.N. Toosi University of Technology, Tehran, Iran.

Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.

出版信息

J Cancer Res Clin Oncol. 2023 Jan;149(1):325-341. doi: 10.1007/s00432-022-04468-2. Epub 2022 Nov 15.

Abstract

BACKGROUND

Ovarian Cancer (OC) is the deadliest gynecology malignancy, whose high recurrence rate in OC patients is a challenging object. Therefore, having deep insights into the genetic and molecular mechanisms of OC recurrence can improve the target therapeutic procedures. This study aimed to discover crucial miRNAs for the detection of tumor recurrence in OC by artificial intelligence approaches.

METHOD

Through the ANOVA feature selection method, we selected 100 candidate miRNAs among 588 miRNAs. For their classification, a deep-learning model was employed to validate the significance of the candidate miRNAs. The accuracy, F1-score (high-risk), and AUC-ROC of classification test data based on the 100 miRNAs were 73%, 0.81, and 0.65, respectively. Association rule mining was used to discover hidden relations among the selected miRNAs.

RESULT

Five miRNAs, including miR-1914, miR-203, miR-135a-2, miR-149, and miR-9-1, were identified as the most frequent items among high-risk association rules. The identified miRNAs may target genes/proteins involved in epithelial-mesenchymal transition (EMT), resistance to therapy, and cancer stem cells; being responsible for the heterogeneity and plasticity of the tumor. Our conclusion presents mir-1914 as the significant candidate miRNA and the most frequent item. Current knowledge indicates that the dysregulated miR-1914 may function as a tumor suppressor or oncogene in the development of cancer.

CONCLUSION

These candidate miRNAs can be considered a powerful tool in the diagnosis of OC recurrence. We hypothesize that mir-1914 might open a new line of research in the realm of managing the recurrence of OC and could be a significant factor in triggering OC recurrence.

摘要

背景

卵巢癌(OC)是致命性最高的妇科恶性肿瘤,OC 患者的高复发率是一个具有挑战性的问题。因此,深入了解 OC 复发的遗传和分子机制可以改善靶向治疗方案。本研究旨在通过人工智能方法发现关键 miRNA 以检测 OC 中的肿瘤复发。

方法

通过方差分析(ANOVA)特征选择方法,我们在 588 个 miRNA 中选择了 100 个候选 miRNA。为了对其进行分类,我们使用深度学习模型来验证候选 miRNA 的重要性。基于这 100 个 miRNA 的分类测试数据的准确性、F1 分数(高危)和 AUC-ROC 分别为 73%、0.81 和 0.65。关联规则挖掘用于发现所选 miRNA 之间隐藏的关系。

结果

发现 5 个 miRNA,包括 miR-1914、miR-203、miR-135a-2、miR-149 和 miR-9-1,是高危关联规则中最常见的项目。鉴定的 miRNA 可能靶向 EMT、治疗耐药和癌症干细胞相关的基因/蛋白,这些基因/蛋白负责肿瘤的异质性和可塑性。我们的结论表明 miR-1914 是重要的候选 miRNA 和最常见的项目。目前的知识表明,失调的 miR-1914 可能在癌症的发生中作为肿瘤抑制因子或癌基因发挥作用。

结论

这些候选 miRNA 可被视为诊断 OC 复发的有力工具。我们假设 miR-1914 可能在管理 OC 复发领域开辟新的研究方向,并且可能是触发 OC 复发的重要因素。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验