Suppr超能文献

基于传播的相衬断层扫描的非线性统计迭代重建

Nonlinear statistical iterative reconstruction for propagation-based phase-contrast tomography.

作者信息

Hehn Lorenz, Morgan Kaye, Bidola Pidassa, Noichl Wolfgang, Gradl Regine, Dierolf Martin, Noël Peter B, Pfeiffer Franz

机构信息

Chair of Biomedical Physics, Department of Physics and Munich School of Bioengineering, Technical University of Munich, 85748 Garching, Germany.

出版信息

APL Bioeng. 2018 Jan 23;2(1):016105. doi: 10.1063/1.4990387. eCollection 2018 Mar.

Abstract

Propagation-based phase-contrast tomography has become a valuable tool for visualization of three-dimensional biological samples, due to its high sensitivity and its potential in providing increased contrast between materials with similar absorption properties. We present a statistical iterative reconstruction algorithm for this imaging technique in the near-field regime. Under the assumption of a single material, the propagation of the x-ray wavefield-relying on the transport-of-intensity equation-is made an integral part of the tomographic reconstruction problem. With a statistical approach acting directly on the measured intensities, we find an unconstrained nonlinear optimization formulation whose solution yields the three-dimensional distribution of the sample. This formulation not only omits the intermediate step of retrieving the projected thicknesses but also takes the statistical properties of the measurements into account and incorporates prior knowledge about the sample in the form of regularization techniques. We show some advantages of this integrated approach compared to two-step approaches on data obtained using a commercially available x-ray micro-tomography system. In particular, we address one of the most considerable challenges of the imaging technique, namely, the artifacts arising from samples containing highly absorbing features. With the use of statistical weights in our noise model, we can account for these materials and recover features in the vicinity of the highly absorbing features that are lost in the conventional two-step approaches. In addition, the statistical modeling of our reconstruction approach will prove particularly beneficial in the ongoing transition of this imaging technique from synchrotron facilities to laboratory setups.

摘要

基于传播的相衬断层扫描术已成为可视化三维生物样本的重要工具,这归因于其高灵敏度以及在增强具有相似吸收特性的材料之间对比度方面的潜力。我们提出了一种适用于近场区域这种成像技术的统计迭代重建算法。在单一材料的假设下,依赖强度传输方程的X射线波场传播成为断层扫描重建问题的一个组成部分。通过直接作用于测量强度的统计方法,我们得到了一个无约束非线性优化公式,其解给出了样本的三维分布。该公式不仅省略了获取投影厚度的中间步骤,还考虑了测量的统计特性,并以正则化技术的形式纳入了关于样本的先验知识。我们展示了这种集成方法相对于使用商用X射线显微断层扫描系统获得的数据的两步法的一些优势。特别是,我们解决了成像技术最严峻的挑战之一,即由包含高吸收特征的样本产生的伪影。通过在我们的噪声模型中使用统计权重,我们可以考虑这些材料,并恢复在传统两步法中丢失的高吸收特征附近的特征。此外,我们重建方法的统计建模在这种成像技术从同步加速器设施向实验室装置的持续转变中将被证明特别有益。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验