Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore.
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China.
Adv Mater. 2019 Jun;31(25):e1901513. doi: 10.1002/adma.201901513. Epub 2019 May 8.
Uncontrolled cancer cell proliferation, insufficient blood flow, and inadequate endogenous oxygen lead to hypoxia in tumor tissues. Herein, a unique type of hypoxia-responsive human serum albumin (HSA)-based nanosystem (HCHOA) is reported, prepared by cross-linking the hypoxia-sensitive azobenzene group between photosensitizer chlorin e6 (Ce6)-conjugated HSA (HC) and oxaliplatin prodrug-conjugated HSA (HO). The HCHOA nanosystem is stable under normal oxygen partial pressure with a size of 100-150 nm. When exposed to the hypoxic tumor microenvironment, the nanosystem can quickly dissociate into ultrasmall HC and HO therapeutic nanoparticles with a diameter smaller than 10 nm, significantly enabling their enhanced intratumoral penetration. After the dissociation, the quenched fluorescence of Ce6 in the produced HC nanoparticles can be recovered for bioimaging. At the same time, the production of singlet oxygen is increased because of the enhancement in the photoactivity of the photosensitizer. On account of these improvements, combined photodynamic therapy and chemotherapy is realized to display superior antitumor efficacy in vivo. Based on this simple strategy, it is possible to achieve the dissociation of hypoxic-responsive nanosystem to enhance the tumor penetration and therapeutic effect.
失控的癌细胞增殖、血流不足和内源性氧气不足导致肿瘤组织缺氧。在此,报道了一种独特的缺氧反应型人血清白蛋白(HSA)为基础的纳米系统(HCHOA),它是通过交联光敏剂氯[e6](Ce6)缀合的 HSA(HC)和奥沙利铂前药缀合的 HSA(HO)之间的缺氧敏感偶氮苯基团制备的。在正常氧分压下,HCHOA 纳米系统的尺寸为 100-150nm,非常稳定。当暴露于缺氧的肿瘤微环境时,纳米系统可以快速解离成直径小于 10nm 的超小 HC 和 HO 治疗性纳米颗粒,显著增强其在肿瘤内的穿透性。解离后,产生的 HC 纳米颗粒中 Ce6 的猝灭荧光可以恢复用于生物成像。同时,由于光敏剂光活性的增强,产生了单线态氧。由于这些改进,实现了光动力治疗和化学治疗的联合,在体内显示出优异的抗肿瘤疗效。基于这种简单的策略,可以实现缺氧反应型纳米系统的解离,以增强肿瘤的穿透性和治疗效果。
Colloids Surf B Biointerfaces. 2019-4-1
Colloids Surf B Biointerfaces. 2018-7-10
Smart Mol. 2024-6-11
Mol Cancer. 2025-6-9
Int J Nanomedicine. 2025-5-31
Signal Transduct Target Ther. 2025-3-19
Theranostics. 2025-1-1