Liu Yurong, Si Longqing, Liu Yunheng, Li Song, Zhang Xiaokang, Jiang Shaojing, Liu Wenjing, Li Xiaolin, Zhang Lianguo, Zheng Hongxia, Liu Zhonghao, Hu Jinghui, Chen Jing
School of Pharmacy, Binzhou Medical University, Yantai, 264003, China.
Yantai Engineering Research Center for Digital Technology of Stomatology, School of Stomatology, Binzhou Medical University, Yantai, 264003, China.
Mater Today Bio. 2025 Mar 26;32:101709. doi: 10.1016/j.mtbio.2025.101709. eCollection 2025 Jun.
Cancer poses a significant threat to human life and health. Cancers treated with cisplatin invariably develop drug resistance. This challenge can be overcome by identifying and exploiting the vulnerabilities acquired by drug-resistant cancer cells, paving the way for finding effective novel treatment options for cisplatin-resistant cancers. Our previous study revealed that cisplatin resistance in cancer cells comes at the cost of increased intracellular hypoxia. In this study, we used 2-nitroimidazole modified hyaluronic acid (HA-NI) as the carrier. The cisplatin-resistant tumor cell specific intracellular hypoxia programmed activation nanomedicine (T/C@HN NPs) was constructed by the hypoxic toxic drug tirapazamine (TPZ) and encapsulating chlorin e6 (Ce6) into HA-NI using polymer assembly technology. The amphiphilic carrier could release free Ce6 molecules under the stimulation of intracellular hypoxic environment, and exhibit specific "activated state" photodynamic properties in cisplatin-resistant tumor cells. Upon irradiation, Ce6-mediated photodynamic therapy further intensifies hypoxia, amplifying its cytotoxicity. This project systematically evaluated the effects of T/C@HN NPs on the identification and recognition of cisplatin-resistant tumors using drug-resistant patient-derived xenograft (PDX) models. This study provides a promising avenue for the development of novel treatment of cisplatin-resistant tumors.
癌症对人类生命和健康构成重大威胁。用顺铂治疗的癌症总会产生耐药性。通过识别和利用耐药癌细胞获得的脆弱性可以克服这一挑战,为寻找顺铂耐药癌症的有效新治疗方案铺平道路。我们之前的研究表明,癌细胞中的顺铂耐药是以细胞内缺氧增加为代价的。在本研究中,我们使用2-硝基咪唑修饰的透明质酸(HA-NI)作为载体。通过缺氧毒性药物替拉扎明(TPZ),并利用聚合物组装技术将二氢卟吩e6(Ce6)包裹到HA-NI中,构建了顺铂耐药肿瘤细胞特异性细胞内缺氧程序性激活纳米药物(T/C@HN NPs)。两亲性载体可在细胞内缺氧环境的刺激下释放游离的Ce6分子,并在顺铂耐药肿瘤细胞中表现出特异性的“激活态”光动力特性。照射后,Ce6介导的光动力疗法进一步加剧缺氧,放大其细胞毒性。本项目使用耐药患者来源的异种移植(PDX)模型系统评估了T/C@HN NPs对顺铂耐药肿瘤的识别和靶向作用。该研究为开发顺铂耐药肿瘤的新治疗方法提供了一条有前景的途径。