Futalan Cybelle M, Kim Jongsik, Yee Jurng-Jae
National Research Center for Disaster-Free and Safe Ocean City, Busan 49315, Republic of Korea.
Department of Chemistry, Dong-A University, Busan 49315, Republic of Korea.
Water Sci Technol. 2019 Mar;79(6):1029-1041. doi: 10.2166/wst.2019.087.
In the present work, the performance of spent coffee grounds (SCG) as an adsorbent in the treatment of real soil washing wastewater (SWW) was evaluated. Scanning electron microscopy, Fourier transform infrared spectroscopy, zeta potential measurement and Brunauer-Emmett-Teller analysis were utilized to determine the physicochemical characteristics of SCG. Maximum removal efficiency of 68.73% for Cu(II), 57.23% for Pb(II) and 84.55% for Zn(II) was attained at 2.5 g SCG, 300 min and 328 K. Error analysis was performed using root mean square error (RMSE) and sum of square error (SSE). Equilibrium data correlated well with the Langmuir isotherm for Pb(II) adsorption and Freundlich model for the removal of Cu(II) and Zn(II). The kinetic study shows that adsorption of the heavy metals using SCG can be satisfactorily described using the pseudo-second order equation (R ≥ 0.9901; RMSE ≤ 15.0539; SSE ≤ 145.1461). Activation parameters including activation energy, change in free energy of activation, activation entropy change (ΔS*) and activation enthalpy change (ΔH*) were determined using Arrhenius and Eyring equations. Thermodynamic studies show that adsorption of the heavy metals using SCG is spontaneous, endothermic (ΔH° ≥ 9.80 kJ/mol·K) and results in increased randomness at the solid/solution interface (ΔS° ≥ 2.28 J/mol).
在本研究中,评估了废咖啡渣(SCG)作为吸附剂处理实际土壤冲洗废水(SWW)的性能。利用扫描电子显微镜、傅里叶变换红外光谱、zeta电位测量和布鲁诺尔-埃米特-特勒分析来确定SCG的物理化学特性。在2.5 g SCG、300分钟和328 K条件下,Cu(II)的最大去除效率达到68.73%,Pb(II)为57.23%,Zn(II)为84.55%。使用均方根误差(RMSE)和平方和误差(SSE)进行误差分析。平衡数据与Pb(II)吸附的朗缪尔等温线以及Cu(II)和Zn(II)去除的弗伦德利希模型相关性良好。动力学研究表明,使用SCG吸附重金属可以用拟二级方程得到满意的描述(R≥0.9901;RMSE≤15.0539;SSE≤145.1461)。使用阿伦尼乌斯方程和艾林方程确定了包括活化能、活化自由能变化、活化熵变(ΔS*)和活化焓变(ΔH*)在内的活化参数。热力学研究表明,使用SCG吸附重金属是自发的、吸热的(ΔH°≥9.80 kJ/mol·K),并且导致固/液界面的随机性增加(ΔS°≥2.28 J/mol)。